Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o51. doi: 10.1107/S1600536807062277

N-[4-(Dimethyl­amino)benzyl­idene]-4-ethoxy­aniline

Qiang Wang a,*, Da-Qi Wang a
PMCID: PMC2915009  PMID: 21200927

Abstract

In the title compound, C17H20N2O, the mol­ecular core is planar, with a central C—N=C—C torsion angle of −179.3 (3)°. However, the overall geometry is not planar, with a dihedral angle of 61.96 (1)° between the two benzene rings, which adopt a trans configuration with respect to the C=N bond [1.269 (4) Å]. The bond lengths and angles are within normal ranges

Related literature

For biological activities, see: Yang et al. (2000). For related synthesis, see: Mondal et al. (2001); Tarafder et al. (2002).graphic file with name e-64-00o51-scheme1.jpg

Experimental

Crystal data

  • C17H20N2O

  • M r = 268.35

  • Monoclinic, Inline graphic

  • a = 9.586 (3) Å

  • b = 16.678 (7) Å

  • c = 9.722 (3) Å

  • β = 109.319 (4)°

  • V = 1466.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.34 × 0.27 × 0.19 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.97, T max = 0.99

  • 7422 measured reflections

  • 2589 independent reflections

  • 1323 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.164

  • S = 1.02

  • 2589 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a ); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a ); molecular graphics: SHELXTL (Sheldrick, 1997b ); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062277/bg2150sup1.cif

e-64-00o51-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062277/bg2150Isup2.hkl

e-64-00o51-Isup2.hkl (127.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University, People’s Republic of China.

supplementary crystallographic information

Comment

Schiff bases have been intensively investigated recently owing to their strong coordination capability and diverse biological activities, such as antibacterial, antitumor activities etc. (Yang et al., 2000; Mondal et al., 2001; Tarafder et al., 2002). We report here the synthesis and crystal structure of the title new Schiff base C17H20N2O, (I).

The molecular structure of (I) is shown in Fig. 1. The molecular core is planar, with a central C—N?C—C torsion angle of -179.3 (3)°. The overall geometry instead, is not, with a dihedral angle of 61.96 (1)° between the two benzene rings, which adopt a trans configuration with respect to the C?N bond [1.269 (4) Å]. The bond lengths and angles are within normal ranges.

Experimental

P-dimethylamino benzaldehyde (5 mmol, 746.0 mg) in absolute ethanol (15 ml) was added dropwise to a absolute ethanol solution (5 ml) of p-ethoxyaniline (5 mmol, 685.9 mg). The mixture was heated under reflux with stirring for 3 h and then filtered. The resulting clear solution was kept at room temperature for 10 days, after which large pale-yellow block-shaped crystals of the title compound suitable for X-ray diffraction analysis were obtained.

Refinement

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 Å (methyl), 0.97(methylene), 0.93 Å (methenyl), 0.93 Å (aromatic), and Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

A molecular view of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C17H20N2O F000 = 576
Mr = 268.35 Dx = 1.215 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1506 reflections
a = 9.586 (3) Å θ = 2.3–23.3º
b = 16.678 (7) Å µ = 0.08 mm1
c = 9.722 (3) Å T = 298 (2) K
β = 109.319 (4)º Block, light yellow
V = 1466.7 (9) Å3 0.34 × 0.27 × 0.19 mm
Z = 4

Data collection

Siemens SMART CCD area-detector diffractometer 2589 independent reflections
Radiation source: fine-focus sealed tube 1323 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.036
T = 298(2) K θmax = 25.0º
φ and ω scans θmin = 2.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −11→11
Tmin = 0.97, Tmax = 0.99 k = −19→15
7422 measured reflections l = −11→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H-atom parameters constrained
wR(F2) = 0.164   w = 1/[σ2(Fo2) + (0.0571P)2 + 0.7834P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
2589 reflections Δρmax = 0.18 e Å3
184 parameters Δρmin = −0.14 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.5988 (3) 0.11288 (15) 0.4352 (3) 0.0543 (7)
N2 0.2098 (3) 0.13050 (17) −0.2456 (3) 0.0614 (8)
O1 0.8309 (2) 0.13646 (13) 1.0402 (2) 0.0614 (6)
C1 0.4827 (3) 0.15105 (18) 0.3643 (4) 0.0521 (8)
H1 0.4384 0.1832 0.4163 0.063*
C2 0.4153 (3) 0.14752 (18) 0.2077 (3) 0.0479 (8)
C3 0.2738 (3) 0.17601 (19) 0.1395 (4) 0.0567 (9)
H3 0.2237 0.1999 0.1960 0.068*
C4 0.2044 (3) 0.17042 (19) −0.0081 (4) 0.0566 (9)
H4 0.1082 0.1893 −0.0488 0.068*
C5 0.2761 (3) 0.13677 (18) −0.0982 (4) 0.0493 (8)
C6 0.4203 (3) 0.10872 (19) −0.0297 (4) 0.0547 (8)
H6 0.4723 0.0863 −0.0858 0.066*
C7 0.4858 (3) 0.11380 (19) 0.1179 (4) 0.0559 (9)
H7 0.5811 0.0939 0.1598 0.067*
C8 0.0542 (4) 0.1494 (2) −0.3144 (4) 0.0716 (11)
H8A −0.0036 0.1185 −0.2696 0.107*
H8B 0.0248 0.1368 −0.4163 0.107*
H8C 0.0386 0.2055 −0.3026 0.107*
C9 0.2890 (4) 0.1011 (2) −0.3392 (4) 0.0782 (11)
H9A 0.3837 0.1269 −0.3137 0.117*
H9B 0.2332 0.1127 −0.4390 0.117*
H9C 0.3026 0.0442 −0.3268 0.117*
C10 0.6552 (3) 0.11975 (18) 0.5892 (3) 0.0475 (8)
C11 0.6938 (3) 0.05080 (19) 0.6712 (4) 0.0509 (8)
H11 0.6818 0.0013 0.6245 0.061*
C12 0.7501 (3) 0.05387 (19) 0.8218 (4) 0.0515 (8)
H12 0.7724 0.0066 0.8755 0.062*
C13 0.7731 (3) 0.12667 (18) 0.8921 (3) 0.0485 (8)
C14 0.7365 (3) 0.19622 (19) 0.8103 (4) 0.0542 (8)
H14 0.7519 0.2457 0.8570 0.065*
C15 0.6778 (3) 0.19303 (19) 0.6611 (4) 0.0554 (9)
H15 0.6531 0.2403 0.6077 0.066*
C16 0.8842 (4) 0.0675 (2) 1.1264 (3) 0.0629 (9)
H16A 0.9620 0.0425 1.0981 0.075*
H16B 0.8049 0.0290 1.1124 0.075*
C17 0.9428 (4) 0.0927 (2) 1.2824 (4) 0.0781 (11)
H17A 1.0181 0.1325 1.2944 0.117*
H17B 0.9841 0.0470 1.3421 0.117*
H17C 0.8639 0.1146 1.3109 0.117*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0525 (16) 0.0502 (17) 0.0639 (18) 0.0000 (14) 0.0244 (14) −0.0015 (14)
N2 0.0514 (16) 0.075 (2) 0.0631 (18) 0.0029 (14) 0.0266 (14) −0.0008 (16)
O1 0.0751 (15) 0.0487 (14) 0.0638 (15) 0.0040 (11) 0.0275 (12) −0.0021 (12)
C1 0.0502 (19) 0.0427 (19) 0.070 (2) −0.0031 (15) 0.0294 (17) −0.0041 (16)
C2 0.0479 (18) 0.0387 (18) 0.061 (2) −0.0032 (14) 0.0239 (16) −0.0009 (15)
C3 0.052 (2) 0.054 (2) 0.071 (2) 0.0082 (16) 0.0306 (18) −0.0053 (17)
C4 0.0463 (18) 0.055 (2) 0.073 (2) 0.0083 (16) 0.0253 (17) 0.0002 (18)
C5 0.0455 (18) 0.0440 (19) 0.066 (2) −0.0046 (14) 0.0281 (16) 0.0000 (16)
C6 0.0495 (19) 0.055 (2) 0.069 (2) −0.0002 (15) 0.0317 (17) −0.0051 (17)
C7 0.0392 (17) 0.053 (2) 0.079 (3) 0.0021 (15) 0.0237 (17) −0.0010 (18)
C8 0.056 (2) 0.087 (3) 0.072 (2) −0.0053 (19) 0.0212 (18) 0.000 (2)
C9 0.075 (2) 0.097 (3) 0.074 (2) 0.009 (2) 0.039 (2) 0.001 (2)
C10 0.0418 (17) 0.047 (2) 0.060 (2) −0.0020 (14) 0.0245 (15) −0.0031 (17)
C11 0.0505 (19) 0.0389 (19) 0.066 (2) −0.0018 (14) 0.0235 (16) −0.0057 (16)
C12 0.0498 (19) 0.0391 (19) 0.069 (2) 0.0011 (14) 0.0250 (17) 0.0032 (17)
C13 0.0462 (18) 0.045 (2) 0.061 (2) 0.0013 (15) 0.0273 (15) −0.0017 (17)
C14 0.063 (2) 0.0372 (19) 0.071 (2) −0.0010 (15) 0.0330 (18) −0.0045 (17)
C15 0.062 (2) 0.042 (2) 0.071 (2) 0.0049 (15) 0.0325 (18) 0.0033 (17)
C16 0.066 (2) 0.061 (2) 0.063 (2) 0.0080 (18) 0.0234 (18) 0.0030 (19)
C17 0.085 (3) 0.082 (3) 0.063 (2) 0.004 (2) 0.018 (2) 0.000 (2)

Geometric parameters (Å, °)

N1—C1 1.269 (4) C8—H8C 0.9600
N1—C10 1.418 (4) C9—H9A 0.9600
N2—C5 1.366 (4) C9—H9B 0.9600
N2—C9 1.450 (4) C9—H9C 0.9600
N2—C8 1.453 (4) C10—C11 1.378 (4)
O1—C13 1.370 (4) C10—C15 1.389 (4)
O1—C16 1.415 (4) C11—C12 1.384 (4)
C1—C2 1.445 (4) C11—H11 0.9300
C1—H1 0.9300 C12—C13 1.375 (4)
C2—C3 1.383 (4) C12—H12 0.9300
C2—C7 1.387 (4) C13—C14 1.385 (4)
C3—C4 1.370 (4) C14—C15 1.372 (4)
C3—H3 0.9300 C14—H14 0.9300
C4—C5 1.398 (4) C15—H15 0.9300
C4—H4 0.9300 C16—C17 1.492 (4)
C5—C6 1.402 (4) C16—H16A 0.9700
C6—C7 1.366 (4) C16—H16B 0.9700
C6—H6 0.9300 C17—H17A 0.9600
C7—H7 0.9300 C17—H17B 0.9600
C8—H8A 0.9600 C17—H17C 0.9600
C8—H8B 0.9600
C1—N1—C10 119.5 (3) H9A—C9—H9B 109.5
C5—N2—C9 121.7 (3) N2—C9—H9C 109.5
C5—N2—C8 121.1 (3) H9A—C9—H9C 109.5
C9—N2—C8 117.1 (3) H9B—C9—H9C 109.5
C13—O1—C16 117.8 (2) C11—C10—C15 118.4 (3)
N1—C1—C2 123.9 (3) C11—C10—N1 118.6 (3)
N1—C1—H1 118.0 C15—C10—N1 122.9 (3)
C2—C1—H1 118.0 C10—C11—C12 121.2 (3)
C3—C2—C7 116.2 (3) C10—C11—H11 119.4
C3—C2—C1 121.1 (3) C12—C11—H11 119.4
C7—C2—C1 122.6 (3) C13—C12—C11 120.1 (3)
C4—C3—C2 122.6 (3) C13—C12—H12 120.0
C4—C3—H3 118.7 C11—C12—H12 120.0
C2—C3—H3 118.7 O1—C13—C12 124.8 (3)
C3—C4—C5 121.0 (3) O1—C13—C14 116.2 (3)
C3—C4—H4 119.5 C12—C13—C14 119.0 (3)
C5—C4—H4 119.5 C15—C14—C13 120.8 (3)
N2—C5—C4 122.3 (3) C15—C14—H14 119.6
N2—C5—C6 121.1 (3) C13—C14—H14 119.6
C4—C5—C6 116.7 (3) C14—C15—C10 120.5 (3)
C7—C6—C5 121.1 (3) C14—C15—H15 119.8
C7—C6—H6 119.4 C10—C15—H15 119.8
C5—C6—H6 119.4 O1—C16—C17 108.3 (3)
C6—C7—C2 122.4 (3) O1—C16—H16A 110.0
C6—C7—H7 118.8 C17—C16—H16A 110.0
C2—C7—H7 118.8 O1—C16—H16B 110.0
N2—C8—H8A 109.5 C17—C16—H16B 110.0
N2—C8—H8B 109.5 H16A—C16—H16B 108.4
H8A—C8—H8B 109.5 C16—C17—H17A 109.5
N2—C8—H8C 109.5 C16—C17—H17B 109.5
H8A—C8—H8C 109.5 H17A—C17—H17B 109.5
H8B—C8—H8C 109.5 C16—C17—H17C 109.5
N2—C9—H9A 109.5 H17A—C17—H17C 109.5
N2—C9—H9B 109.5 H17B—C17—H17C 109.5
C10—N1—C1—C2 −179.3 (3) C1—C2—C7—C6 178.3 (3)
N1—C1—C2—C3 166.0 (3) C1—N1—C10—C11 132.5 (3)
N1—C1—C2—C7 −12.1 (5) C1—N1—C10—C15 −49.7 (4)
C7—C2—C3—C4 1.2 (5) C15—C10—C11—C12 1.7 (4)
C1—C2—C3—C4 −177.1 (3) N1—C10—C11—C12 179.7 (3)
C2—C3—C4—C5 −1.5 (5) C10—C11—C12—C13 −2.2 (4)
C9—N2—C5—C4 175.3 (3) C16—O1—C13—C12 6.5 (4)
C8—N2—C5—C4 −7.8 (5) C16—O1—C13—C14 −173.4 (3)
C9—N2—C5—C6 −5.3 (5) C11—C12—C13—O1 −178.6 (3)
C8—N2—C5—C6 171.6 (3) C11—C12—C13—C14 1.2 (4)
C3—C4—C5—N2 −179.9 (3) O1—C13—C14—C15 180.0 (3)
C3—C4—C5—C6 0.7 (5) C12—C13—C14—C15 0.1 (4)
N2—C5—C6—C7 −178.9 (3) C13—C14—C15—C10 −0.6 (4)
C4—C5—C6—C7 0.5 (5) C11—C10—C15—C14 −0.4 (4)
C5—C6—C7—C2 −0.9 (5) N1—C10—C15—C14 −178.2 (3)
C3—C2—C7—C6 0.0 (5) C13—O1—C16—C17 179.4 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2150).

References

  1. Mondal, N., Mitra, S., Gramilich, V., Ghodsi, S. O. & Abdul Malik, K. M. (2001). Polyhedron, 20, 135–141.
  2. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  3. Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  4. Sheldrick, G. M. (1997b). SHELXTL Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  6. Tarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691–2698.
  7. Yang, Z.-Y., Yang, R.-D., Li, F.-S. & Yu, K.-B. (2000). Polyhedron, 19, 2599–2604.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062277/bg2150sup1.cif

e-64-00o51-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062277/bg2150Isup2.hkl

e-64-00o51-Isup2.hkl (127.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES