Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o52. doi: 10.1107/S1600536807061594

N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-4-methyl­benzene­sulfonamide

Luiz Everson da Silva a, Paulo Teixeira de Sousa Jr a, Evandro Luiz Dall’Oglio a, Sabine Foro b,*
PMCID: PMC2915010  PMID: 21200928

Abstract

In the title compound, C18H19N3O3S, the phenyl ring and the pyrazole ring are twisted with respect to each other by an angle of 49.11 (7)°. The C—N—S—C torsion angle is −122.5 (2)°. The methyl group bonded to the N atom of the pyrazole ring has a large deviation from the mean ring plane of 0.603 (3) Å. One inter­molecular N—H⋯O and two non-classical inter­molecular C—H⋯O hydrogen bonds are observed in the crystal structure.

Related literature

For related literature, see: Xue et al. (2000); Alves & Duarte (2002).graphic file with name e-64-00o52-scheme1.jpg

Experimental

Crystal data

  • C18H19N3O3S

  • M r = 357.42

  • Triclinic, Inline graphic

  • a = 9.202 (1) Å

  • b = 9.892 (1) Å

  • c = 10.067 (1) Å

  • α = 103.688 (9)°

  • β = 90.360 (9)°

  • γ = 104.300 (9)°

  • V = 860.71 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 299 (2) K

  • 0.50 × 0.20 × 0.16 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.902, T max = 0.967

  • 10096 measured reflections

  • 3519 independent reflections

  • 2600 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.109

  • S = 1.07

  • 3519 reflections

  • 259 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXS97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807061594/bt2634sup1.cif

e-64-00o52-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061594/bt2634Isup2.hkl

e-64-00o52-Isup2.hkl (172.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.87 (2) 1.97 (2) 2.826 (2) 167.1 (18)
C2—H2⋯O1ii 0.92 (2) 2.54 (2) 3.270 (2) 136.4 (16)
C12—H12⋯O2iii 0.97 (2) 2.43 (2) 3.245 (2) 141.9 (17)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Professor Dr. Hartmut Fuess, Technische Universität Darmstadt, for diffractometer time.

supplementary crystallographic information

Comment

Pyrazolone derivatives, as dypirone, known as a non-steroidal anti-inflammatory drug show analgesic property and have been widely used in Europa and Latin America (Alves & Duarte, 2002). The crystal elucidation of the title compound is a strategy to find new 4-aminoantypirine derivatives with biological significance.

The pyrazole moiety forms a C8—N1—S1—C1 torsion angle with the toluene ring of -122.5 (2)° and a dihedral angle between the mean planes of 49.11 (7)° with the phenyl ring showing the nonplanarity of the system. The methyl group with C18 bounded to the nitrogen atom N2 of the pyrazole ring has a high deviation from the mean plane of -0.603 (3) Å. The NH group has an intermolecular hydrogen bond to the oxygen atom O3 [N—H···O = 1.97 (2) Å]. Both sulfonamide oxygen atoms O1 and O2 are involved in non-classical intermolecular hydrogen bonds with C2 and C12 [C—H···O = 2.54 (2) Å, C—H···O = 2.43 (2) Å, respectively] (Table 1).

Experimental

The ligand was obtained according to the procedure previously described (Xue et al., 2000). Single crystals of (I) suitable for X-ray data collection appeared after a few days from methanol-dichloromethane (1:1).

Refinement

The H atoms of the methyl groups were positioned with idealized geometry using a riding model with C—H = 0.96 Å. The other H atoms were located in difference map, and their positional parameters were refined freely with N—H = 0.87 (2) %A and C—H = 0.92 (2)–0.97 (2) Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom labeling and displacement ellipsoids drawn at the 50% probability level.

Crystal data

C18H19N3O3S Z = 2
Mr = 357.42 F000 = 376
Triclinic, P1 Dx = 1.379 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 9.202 (1) Å Cell parameters from 4280 reflections
b = 9.892 (1) Å θ = 2.0–25.6º
c = 10.067 (1) Å µ = 0.21 mm1
α = 103.688 (9)º T = 299 (2) K
β = 90.360 (9)º Rod, colorless
γ = 104.300 (9)º 0.50 × 0.20 × 0.16 mm
V = 860.71 (15) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector 3519 independent reflections
Radiation source: fine-focus sealed tube 2600 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.028
T = 299(2) K θmax = 26.4º
Rotation method data acquisition using ω and phi scans. θmin = 2.3º
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007) h = −11→11
Tmin = 0.902, Tmax = 0.967 k = −12→12
10096 measured reflections l = −12→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109   w = 1/[σ2(Fo2) + (0.0545P)2 + 0.208P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.041
3519 reflections Δρmax = 0.23 e Å3
259 parameters Δρmin = −0.35 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.15033 (19) 0.83574 (19) 0.62802 (18) 0.0331 (4)
C2 0.0708 (2) 0.8120 (2) 0.50358 (19) 0.0381 (4)
H2 0.015 (2) 0.875 (2) 0.491 (2) 0.046*
C3 0.0712 (2) 0.6926 (2) 0.4009 (2) 0.0416 (5)
H3 0.016 (2) 0.677 (2) 0.319 (2) 0.050*
C4 0.1508 (2) 0.5953 (2) 0.4180 (2) 0.0429 (5)
C5 0.2301 (3) 0.6212 (2) 0.5424 (2) 0.0478 (5)
H5 0.280 (3) 0.554 (3) 0.562 (2) 0.057*
C6 0.2306 (2) 0.7402 (2) 0.6482 (2) 0.0429 (5)
H6 0.285 (2) 0.756 (2) 0.731 (2) 0.051*
C7 0.1510 (3) 0.4657 (2) 0.3046 (2) 0.0620 (6)
H7A 0.2306 0.4904 0.2466 0.074*
H7B 0.0563 0.4340 0.2517 0.074*
H7C 0.1663 0.3898 0.3430 0.074*
C8 −0.12615 (19) 1.02665 (19) 0.81942 (17) 0.0330 (4)
C9 −0.2574 (2) 0.9894 (2) 0.74125 (17) 0.0347 (4)
C10 −0.11502 (19) 1.16193 (19) 0.91546 (17) 0.0327 (4)
C11 −0.3116 (2) 1.2945 (2) 0.98271 (17) 0.0343 (4)
C12 −0.4544 (2) 1.2434 (2) 1.0227 (2) 0.0416 (5)
H12 −0.510 (2) 1.144 (2) 0.988 (2) 0.050*
C13 −0.5179 (3) 1.3360 (3) 1.1144 (2) 0.0525 (6)
H13 −0.617 (3) 1.300 (3) 1.140 (2) 0.063*
C14 −0.4392 (3) 1.4765 (3) 1.1678 (2) 0.0583 (6)
H14 −0.482 (3) 1.542 (3) 1.228 (2) 0.070*
C15 −0.2969 (3) 1.5266 (3) 1.1285 (2) 0.0559 (6)
H15 −0.247 (3) 1.622 (3) 1.159 (2) 0.067*
C16 −0.2324 (2) 1.4360 (2) 1.0346 (2) 0.0446 (5)
H16 −0.136 (3) 1.466 (2) 1.005 (2) 0.054*
C17 −0.3153 (2) 0.8652 (2) 0.6214 (2) 0.0472 (5)
H17A −0.2589 0.7950 0.6183 0.057*
H17B −0.3051 0.8980 0.5386 0.057*
H17C −0.4194 0.8226 0.6299 0.057*
C18 −0.4369 (2) 1.1268 (2) 0.6960 (2) 0.0441 (5)
H18A −0.5081 1.0412 0.6456 0.053*
H18B −0.3786 1.1736 0.6332 0.053*
H18C −0.4896 1.1908 0.7498 0.053*
N1 −0.02275 (17) 0.94195 (17) 0.81689 (15) 0.0349 (4)
H1N −0.024 (2) 0.889 (2) 0.875 (2) 0.042*
N2 −0.33766 (17) 1.08873 (17) 0.78608 (15) 0.0374 (4)
N3 −0.24404 (16) 1.20148 (16) 0.88633 (15) 0.0361 (4)
O1 0.15031 (16) 1.10496 (14) 0.70246 (14) 0.0467 (4)
O2 0.25442 (14) 0.99605 (15) 0.86636 (13) 0.0478 (4)
O3 −0.01857 (14) 1.23296 (14) 1.00850 (13) 0.0403 (3)
S1 0.14404 (5) 0.98554 (5) 0.76144 (4) 0.03506 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0302 (9) 0.0337 (9) 0.0365 (9) 0.0078 (7) 0.0056 (7) 0.0112 (8)
C2 0.0388 (10) 0.0400 (11) 0.0389 (10) 0.0138 (9) 0.0014 (8) 0.0126 (8)
C3 0.0436 (11) 0.0444 (11) 0.0353 (10) 0.0083 (9) 0.0031 (9) 0.0100 (9)
C4 0.0466 (11) 0.0370 (11) 0.0441 (11) 0.0076 (9) 0.0160 (9) 0.0110 (9)
C5 0.0524 (13) 0.0464 (12) 0.0541 (12) 0.0253 (10) 0.0102 (10) 0.0171 (10)
C6 0.0415 (11) 0.0518 (12) 0.0402 (10) 0.0182 (10) 0.0015 (9) 0.0139 (9)
C7 0.0764 (17) 0.0471 (13) 0.0580 (14) 0.0161 (12) 0.0197 (12) 0.0034 (11)
C8 0.0306 (9) 0.0390 (10) 0.0305 (9) 0.0090 (8) 0.0037 (7) 0.0105 (8)
C9 0.0341 (9) 0.0394 (10) 0.0303 (9) 0.0078 (8) 0.0037 (7) 0.0094 (8)
C10 0.0293 (9) 0.0380 (10) 0.0321 (9) 0.0077 (8) 0.0026 (7) 0.0118 (8)
C11 0.0326 (9) 0.0393 (10) 0.0333 (9) 0.0133 (8) 0.0000 (7) 0.0093 (8)
C12 0.0395 (11) 0.0431 (11) 0.0424 (10) 0.0106 (9) 0.0030 (8) 0.0107 (9)
C13 0.0460 (13) 0.0643 (15) 0.0523 (13) 0.0217 (11) 0.0136 (10) 0.0162 (11)
C14 0.0621 (15) 0.0639 (15) 0.0524 (13) 0.0344 (13) 0.0064 (11) 0.0016 (11)
C15 0.0616 (15) 0.0409 (12) 0.0602 (14) 0.0169 (11) −0.0104 (12) −0.0006 (11)
C16 0.0380 (11) 0.0426 (11) 0.0515 (12) 0.0084 (9) −0.0009 (9) 0.0098 (9)
C17 0.0458 (12) 0.0487 (12) 0.0410 (11) 0.0091 (10) −0.0031 (9) 0.0026 (9)
C18 0.0345 (10) 0.0566 (13) 0.0415 (10) 0.0104 (9) −0.0033 (8) 0.0142 (9)
N1 0.0347 (8) 0.0386 (9) 0.0365 (8) 0.0131 (7) 0.0057 (7) 0.0147 (7)
N2 0.0317 (8) 0.0445 (9) 0.0344 (8) 0.0105 (7) −0.0045 (6) 0.0057 (7)
N3 0.0307 (8) 0.0409 (9) 0.0345 (8) 0.0099 (7) −0.0013 (6) 0.0043 (7)
O1 0.0529 (9) 0.0362 (7) 0.0511 (8) 0.0088 (6) 0.0111 (7) 0.0138 (6)
O2 0.0348 (7) 0.0570 (9) 0.0443 (8) 0.0050 (6) −0.0057 (6) 0.0059 (7)
O3 0.0348 (7) 0.0408 (7) 0.0412 (7) 0.0064 (6) −0.0068 (6) 0.0058 (6)
S1 0.0318 (3) 0.0350 (3) 0.0358 (2) 0.00564 (18) 0.00188 (18) 0.00684 (18)

Geometric parameters (Å, °)

C1—C6 1.384 (3) C11—C12 1.386 (3)
C1—C2 1.387 (3) C11—N3 1.429 (2)
C1—S1 1.7620 (18) C12—C13 1.380 (3)
C2—C3 1.375 (3) C12—H12 0.97 (2)
C2—H2 0.92 (2) C13—C14 1.375 (3)
C3—C4 1.385 (3) C13—H13 0.96 (2)
C3—H3 0.93 (2) C14—C15 1.377 (3)
C4—C5 1.382 (3) C14—H14 0.94 (2)
C4—C7 1.502 (3) C15—C16 1.384 (3)
C5—C6 1.387 (3) C15—H15 0.92 (3)
C5—H5 0.95 (2) C16—H16 0.94 (2)
C6—H6 0.92 (2) C17—H17A 0.9600
C7—H7A 0.9600 C17—H17B 0.9600
C7—H7B 0.9600 C17—H17C 0.9600
C7—H7C 0.9600 C18—N2 1.456 (2)
C8—C9 1.358 (2) C18—H18A 0.9600
C8—N1 1.411 (2) C18—H18B 0.9600
C8—C10 1.433 (2) C18—H18C 0.9600
C9—N2 1.367 (2) N1—S1 1.6281 (16)
C9—C17 1.488 (3) N1—H1N 0.87 (2)
C10—O3 1.236 (2) N2—N3 1.409 (2)
C10—N3 1.389 (2) O1—S1 1.4318 (14)
C11—C16 1.381 (3) O2—S1 1.4284 (14)
C6—C1—C2 120.13 (18) C14—C13—C12 120.4 (2)
C6—C1—S1 120.34 (14) C14—C13—H13 121.2 (14)
C2—C1—S1 119.51 (14) C12—C13—H13 118.3 (14)
C3—C2—C1 119.68 (19) C13—C14—C15 120.1 (2)
C3—C2—H2 120.0 (13) C13—C14—H14 121.8 (16)
C1—C2—H2 120.3 (13) C15—C14—H14 118.0 (16)
C2—C3—C4 121.46 (19) C14—C15—C16 120.3 (2)
C2—C3—H3 118.7 (13) C14—C15—H15 120.4 (16)
C4—C3—H3 119.8 (13) C16—C15—H15 119.2 (16)
C5—C4—C3 118.02 (18) C11—C16—C15 119.2 (2)
C5—C4—C7 121.1 (2) C11—C16—H16 117.9 (13)
C3—C4—C7 120.87 (19) C15—C16—H16 122.8 (14)
C4—C5—C6 121.73 (19) C9—C17—H17A 109.5
C4—C5—H5 121.0 (14) C9—C17—H17B 109.5
C6—C5—H5 117.0 (14) H17A—C17—H17B 109.5
C1—C6—C5 118.98 (19) C9—C17—H17C 109.5
C1—C6—H6 120.6 (14) H17A—C17—H17C 109.5
C5—C6—H6 120.4 (14) H17B—C17—H17C 109.5
C4—C7—H7A 109.5 N2—C18—H18A 109.5
C4—C7—H7B 109.5 N2—C18—H18B 109.5
H7A—C7—H7B 109.5 H18A—C18—H18B 109.5
C4—C7—H7C 109.5 N2—C18—H18C 109.5
H7A—C7—H7C 109.5 H18A—C18—H18C 109.5
H7B—C7—H7C 109.5 H18B—C18—H18C 109.5
C9—C8—N1 126.38 (17) C8—N1—S1 122.21 (13)
C9—C8—C10 108.83 (16) C8—N1—H1N 121.7 (13)
N1—C8—C10 124.56 (16) S1—N1—H1N 110.7 (13)
C8—C9—N2 109.58 (16) C9—N2—N3 106.85 (14)
C8—C9—C17 129.48 (18) C9—N2—C18 123.39 (15)
N2—C9—C17 120.92 (17) N3—N2—C18 117.59 (15)
O3—C10—N3 124.10 (17) C10—N3—N2 109.26 (14)
O3—C10—C8 130.98 (17) C10—N3—C11 124.48 (14)
N3—C10—C8 104.90 (15) N2—N3—C11 118.75 (14)
C16—C11—C12 120.73 (18) O2—S1—O1 119.94 (9)
C16—C11—N3 118.91 (17) O2—S1—N1 109.23 (8)
C12—C11—N3 120.36 (17) O1—S1—N1 107.43 (8)
C13—C12—C11 119.2 (2) O2—S1—C1 106.91 (9)
C13—C12—H12 119.7 (13) O1—S1—C1 107.94 (8)
C11—C12—H12 121.1 (13) N1—S1—C1 104.32 (8)
C6—C1—C2—C3 0.5 (3) C10—C8—N1—S1 −73.9 (2)
S1—C1—C2—C3 −177.76 (14) C8—C9—N2—N3 6.99 (19)
C1—C2—C3—C4 −0.7 (3) C17—C9—N2—N3 −171.68 (15)
C2—C3—C4—C5 0.3 (3) C8—C9—N2—C18 148.18 (17)
C2—C3—C4—C7 −179.63 (18) C17—C9—N2—C18 −30.5 (3)
C3—C4—C5—C6 0.3 (3) O3—C10—N3—N2 −172.84 (16)
C7—C4—C5—C6 −179.82 (19) C8—C10—N3—N2 5.62 (18)
C2—C1—C6—C5 0.0 (3) O3—C10—N3—C11 −23.8 (3)
S1—C1—C6—C5 178.27 (15) C8—C10—N3—C11 154.70 (16)
C4—C5—C6—C1 −0.4 (3) C9—N2—N3—C10 −7.89 (19)
N1—C8—C9—N2 171.06 (16) C18—N2—N3—C10 −151.70 (15)
C10—C8—C9—N2 −3.6 (2) C9—N2—N3—C11 −159.01 (15)
N1—C8—C9—C17 −10.4 (3) C18—N2—N3—C11 57.2 (2)
C10—C8—C9—C17 174.95 (17) C16—C11—N3—C10 64.2 (2)
C9—C8—C10—O3 176.98 (18) C12—C11—N3—C10 −116.1 (2)
N1—C8—C10—O3 2.2 (3) C16—C11—N3—N2 −149.34 (17)
C9—C8—C10—N3 −1.34 (18) C12—C11—N3—N2 30.4 (2)
N1—C8—C10—N3 −176.10 (15) C8—N1—S1—O2 123.46 (15)
C16—C11—C12—C13 0.6 (3) C8—N1—S1—O1 −8.10 (16)
N3—C11—C12—C13 −179.08 (17) C8—N1—S1—C1 −122.52 (15)
C11—C12—C13—C14 −1.3 (3) C6—C1—S1—O2 11.34 (18)
C12—C13—C14—C15 0.9 (4) C2—C1—S1—O2 −170.41 (14)
C13—C14—C15—C16 0.3 (4) C6—C1—S1—O1 141.64 (16)
C12—C11—C16—C15 0.6 (3) C2—C1—S1—O1 −40.11 (17)
N3—C11—C16—C15 −179.73 (18) C6—C1—S1—N1 −104.31 (16)
C14—C15—C16—C11 −1.0 (3) C2—C1—S1—N1 73.94 (16)
C9—C8—N1—S1 112.28 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O3i 0.87 (2) 1.97 (2) 2.826 (2) 167.1 (18)
C2—H2···O1ii 0.92 (2) 2.54 (2) 3.270 (2) 136.4 (16)
C12—H12···O2iii 0.97 (2) 2.43 (2) 3.245 (2) 141.9 (17)

Symmetry codes: (i) −x, −y+2, −z+2; (ii) −x, −y+2, −z+1; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2634).

References

  1. Alves, D. P. & Duarte, I. D. G. (2002). Eur. J. Pharmacol.444, 47–52. [DOI] [PubMed]
  2. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Versions 1.171.32.5. Oxford Diffraction Ltd, Köln, Germany.
  3. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  4. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  5. Xue, G., Bradshaw, J. S., Dalley, N. K., Savage, P. B., Izatt, R. M., Prodi, L., Montalti, M. & Zaccheroni, N. (2000). Tetrahedron, 58, 4809–4815.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807061594/bt2634sup1.cif

e-64-00o52-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061594/bt2634Isup2.hkl

e-64-00o52-Isup2.hkl (172.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES