Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o72. doi: 10.1107/S1600536807061727

4-Methyl-1-phenyl­quinolin-2(1H)-one

Petar Yotov Petrov a, Malinka Stoyanova b, Boris Shivachev c,*
PMCID: PMC2915029  PMID: 21200949

Abstract

In the title compound, C16H13NO, the mol­ecules are connected three-dimensionally through non-classical C—H⋯O and C—H⋯π inter­actions of 3.272 (3), 3.380 (3) and 3.382 (4) Å. Classical hydrogen bonds are not observed. The dihedral angle between the benzyl and quinolin-2(1H)-one mean planes is 87.15 (7)°

Related literature

For related literature, see: Bondensgaard & Jacobsen (1999); Fürstenberg et al. (2006); Kovalska et al. (2006); Martínez & Chacón-García (2005); Perekalin & Lerner (1951); Rajnikant et al. (2002); Schenkel & Aeberli (1957); Shishkina et al. (2005); Staerk et al. (1997); Vasilev et al. (2005); Vincente et al. (2005); Zipper et al. (2004); Sheldrick & Morr (1981).graphic file with name e-64-00o72-scheme1.jpg

Experimental

Crystal data

  • C16H13NO

  • M r = 235.27

  • Monoclinic, Inline graphic

  • a = 8.984 (2) Å

  • b = 14.194 (4) Å

  • c = 10.1785 (16) Å

  • β = 106.631 (15)°

  • V = 1243.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 290 (2) K

  • 0.31 × 0.31 × 0.31 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 6212 measured reflections

  • 2991 independent reflections

  • 1351 reflections with I > 2σ(I)

  • R int = 0.053

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.160

  • S = 0.97

  • 2991 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); Mercury (Bruno et al., 2002); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807061727/pr2017sup1.cif

e-64-00o72-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061727/pr2017Isup2.hkl

e-64-00o72-Isup2.hkl (143.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1i 1.13 2.37 3.272 (3) 135
C4—H4⋯O1ii 1.09 2.63 3.380 (3) 125
C8—H8ACg1iii 1.11 2.73 3.382 (4) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the National Research Fund of Bulgaria for financial support (grant No. BYX 03.05).

supplementary crystallographic information

Comment

DNA intercalation is one of the interactions of nucleic acids with small organic molecules, through which effective antitumor agents can be designed (Martínez et al., 2005). A relevant area of research is the finding of fluorescent markers for highly sensitive DNA detection (Staerk et al., 1997; Bondensgaard et al., 1999). For the latter application, few cyanine dyes containing quinoline end-groups are established (Zipper et al., 2004), and new representatives with similar and even better efficiency were recently synthesized (Vasilev et al., 2005; Kovalska et al., 2006; Fürstenberg et al., 2006). Herein, we report the structure of (I) which is an oxo-substituted fragment of these dyes – a long known molecule (Perekalin et al., 1951).

In the unit cell of (I), only one independent molecule is present. The bond distances and angles in the benzyl and quinolin-2(1H)-one moieties are comparable to those observed in other quinolinone derivatives (Rajnikant et al., 2002; Vincente et al., 2005; Shishkina et al., 2005). The molecule posses two nearly planar ring systems [r.m.s. deviation of 0.004 (5)Å and 0.021 (4) Å for the benzyl and quinolin-2(1H)-one fragments respectively] which are capable of intercalation, attached to each other in a conformationally fluxional way. The dihedral angle between the benzyl and quinolinone mean planes is 87.15 (7) °.

In the crystal structure of (I), the molecules are connected through non-classical C—H···O hydrogen bonds and CH3-π interactions between methyl and benzyl fragments C8—H8A···Cg1i; Cg1 is the centroid of the 1-Phenyl derivative [symmetry code (i): 1 - x, -1/2 + y, 3/2 - z]. The carbonyl O atom forms a bifurcated hydrogen bond. A head-to-tail C4—H4···O1i [symmetry code (i): x - 1,y,z] interaction between quinolinone fragments build up straight chains along a axis. A side-to-side C14—H14···O1i [symmetry code (i): 2 - x, 1/2 + y, 3/2 - z] interaction forms zigzag chains along b.

Experimental

The title compound was synthesized by dehydro-cyclization (Perekalin et al., 1951) of the respective acetoacetamide (Schenkel et al., 1957). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation from toluene.

Refinement

All hydrogen atoms were located in a difference map and were constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(Cmethyl) and Uiso(H) = 1.2Ueq(C or N).

Figures

Fig. 1.

Fig. 1.

View of the structure and the atom-numbering scheme of (I) showing 50% probability displacement ellipsoids. H atoms are shown as small spheres of an arbitrary radii.

Fig. 2.

Fig. 2.

A view of the molecular packing in (I). All H atoms not involved in the short contact interactions have been omitted for clarity [symmetry codes: (i) 1 + x,y,z; (ii) 2 - x, -1/2 + y, 3/2 - z; (iii) 2 - x, -1/2 + y, 3/2 - z; (iv) 1 - x, 1 - y, 1 - z]. The dotted lines indicate the C—H···O and C—H···π interactions.

Crystal data

C16H13NO F000 = 496
Mr = 235.27 Dx = 1.256 Mg m3
Monoclinic, P21/c Melting point: not measured K
Hall symbol: -P 2ybc Mo Kα radiation λ = 0.71073 Å
a = 8.984 (2) Å Cell parameters from 22 reflections
b = 14.194 (4) Å θ = 18.2–19.3º
c = 10.1785 (16) Å µ = 0.08 mm1
β = 106.631 (15)º T = 290 (2) K
V = 1243.7 (5) Å3 Cubic, pale yellow
Z = 4 0.31 × 0.31 × 0.31 mm

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.053
Radiation source: fine-focus sealed tube θmax = 28.0º
Monochromator: graphite θmin = 2.4º
T = 290(2) K h = 0→11
non–profiled ω/2θ scans k = −18→18
Absorption correction: none l = −13→12
6212 measured reflections 3 standard reflections
2991 independent reflections every 120 min
1351 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055 H-atom parameters constrained
wR(F2) = 0.160   w = 1/[σ2(Fo2) + (0.0699P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97 (Δ/σ)max < 0.001
2991 reflections Δρmax = 0.15 e Å3
164 parameters Δρmin = −0.16 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.7036 (2) 0.45463 (12) 0.80663 (18) 0.0468 (5)
C1 0.5505 (2) 0.46557 (16) 0.8116 (2) 0.0443 (5)
C6 0.4822 (3) 0.39507 (15) 0.8725 (2) 0.0448 (5)
O1 0.9282 (2) 0.37000 (13) 0.8539 (2) 0.0763 (6)
C2 0.4652 (3) 0.54564 (16) 0.7571 (2) 0.0500 (6)
H2 0.5194 0.5981 0.7165 0.060*
C11 0.7750 (2) 0.52552 (15) 0.7433 (2) 0.0461 (6)
C5 0.3277 (3) 0.40691 (18) 0.8733 (2) 0.0535 (6)
H5 0.2882 0.3524 0.9123 0.064*
C4 0.2438 (3) 0.48561 (19) 0.8192 (2) 0.0580 (7)
H4 0.1196 0.4968 0.8047 0.070*
C10 0.7938 (3) 0.37699 (17) 0.8615 (3) 0.0554 (6)
C9 0.7218 (3) 0.30818 (17) 0.9274 (2) 0.0580 (7)
H9 0.7825 0.2518 0.9753 0.070*
C3 0.3150 (3) 0.55537 (17) 0.7623 (2) 0.0570 (6)
H3 0.2571 0.6117 0.7295 0.068*
C7 0.5753 (3) 0.31498 (16) 0.9346 (2) 0.0519 (6)
C8 0.5092 (3) 0.24147 (17) 1.0075 (3) 0.0711 (8)
H8B 0.4706 0.2655 1.0736 0.107*
H8C 0.5783 0.1853 1.0437 0.107*
H8A 0.4026 0.2090 0.9385 0.107*
C16 0.7687 (3) 0.51761 (18) 0.6074 (3) 0.0632 (7)
H16 0.7009 0.4576 0.5534 0.076*
C13 0.9139 (3) 0.67027 (18) 0.7559 (3) 0.0639 (7)
H13 0.9747 0.7274 0.8167 0.077*
C14 0.9077 (3) 0.66239 (19) 0.6202 (3) 0.0627 (7)
H14 0.9663 0.7190 0.5738 0.075*
C12 0.8477 (3) 0.60141 (18) 0.8181 (3) 0.0586 (7)
H12 0.8565 0.5980 0.8999 0.070*
C15 0.8372 (3) 0.5863 (2) 0.5463 (3) 0.0730 (8)
H15 0.8372 0.5753 0.4416 0.109 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0390 (10) 0.0453 (11) 0.0582 (12) 0.0007 (9) 0.0173 (9) 0.0040 (9)
C1 0.0376 (12) 0.0499 (13) 0.0448 (13) −0.0019 (10) 0.0110 (10) −0.0053 (11)
C6 0.0473 (13) 0.0437 (13) 0.0441 (12) −0.0056 (11) 0.0144 (10) −0.0078 (10)
O1 0.0509 (11) 0.0703 (12) 0.1140 (16) 0.0136 (9) 0.0336 (11) 0.0111 (11)
C2 0.0456 (13) 0.0505 (14) 0.0537 (14) 0.0008 (11) 0.0138 (11) 0.0035 (11)
C11 0.0373 (11) 0.0462 (14) 0.0563 (14) −0.0004 (10) 0.0154 (11) −0.0018 (11)
C5 0.0496 (14) 0.0584 (15) 0.0568 (15) −0.0079 (12) 0.0222 (12) −0.0046 (12)
C4 0.0417 (13) 0.0720 (17) 0.0621 (16) 0.0004 (13) 0.0179 (12) −0.0039 (14)
C10 0.0476 (14) 0.0510 (14) 0.0680 (16) 0.0056 (12) 0.0173 (12) −0.0013 (12)
C9 0.0574 (15) 0.0450 (14) 0.0702 (17) 0.0051 (12) 0.0162 (13) 0.0018 (12)
C3 0.0446 (14) 0.0624 (16) 0.0616 (15) 0.0084 (12) 0.0115 (12) 0.0027 (13)
C7 0.0576 (15) 0.0430 (14) 0.0558 (14) −0.0060 (12) 0.0176 (12) −0.0063 (11)
C8 0.085 (2) 0.0497 (15) 0.0871 (19) −0.0027 (14) 0.0388 (17) 0.0077 (14)
C16 0.0760 (18) 0.0561 (15) 0.0619 (17) −0.0119 (14) 0.0268 (14) −0.0051 (13)
C13 0.0516 (15) 0.0549 (15) 0.0838 (19) −0.0149 (12) 0.0171 (14) −0.0095 (14)
C14 0.0551 (15) 0.0554 (16) 0.084 (2) −0.0032 (13) 0.0309 (14) 0.0065 (14)
C12 0.0526 (14) 0.0634 (16) 0.0614 (15) −0.0088 (13) 0.0187 (12) −0.0081 (13)
C15 0.093 (2) 0.0674 (18) 0.0687 (18) −0.0083 (17) 0.0392 (17) −0.0007 (15)

Geometric parameters (Å, °)

N1—C10 1.387 (3) C9—C7 1.342 (3)
N1—C1 1.400 (3) C9—H9 1.0118
N1—C11 1.441 (3) C3—H3 0.9603
C1—C2 1.394 (3) C7—C8 1.499 (3)
C1—C6 1.407 (3) C8—H8B 0.9069
C6—C5 1.401 (3) C8—H8C 1.0133
C6—C7 1.445 (3) C8—H8A 1.1127
O1—C10 1.236 (3) C16—C15 1.391 (4)
C2—C3 1.373 (3) C16—H16 1.0983
C2—H2 1.0382 C13—C14 1.371 (3)
C11—C12 1.372 (3) C13—C12 1.387 (3)
C11—C16 1.372 (3) C13—H13 1.0707
C5—C4 1.372 (3) C14—C15 1.364 (4)
C5—H5 0.9818 C14—H14 1.1348
C4—C3 1.392 (3) C12—H12 0.8147
C4—H4 1.0949 C15—H15 1.0773
C10—C9 1.439 (3)
C10—N1—C1 122.73 (19) C2—C3—C4 121.2 (2)
C10—N1—C11 116.83 (18) C2—C3—H3 120.7
C1—N1—C11 120.44 (18) C4—C3—H3 118.0
C2—C1—N1 120.7 (2) C9—C7—C6 119.1 (2)
C2—C1—C6 119.7 (2) C9—C7—C8 120.7 (2)
N1—C1—C6 119.6 (2) C6—C7—C8 120.2 (2)
C5—C6—C1 118.4 (2) C7—C8—H8B 113.3
C5—C6—C7 122.8 (2) C7—C8—H8C 116.1
C1—C6—C7 118.8 (2) H8B—C8—H8C 110.5
C3—C2—C1 120.1 (2) C7—C8—H8A 111.6
C3—C2—H2 121.5 H8B—C8—H8A 100.4
C1—C2—H2 118.4 H8C—C8—H8A 103.3
C12—C11—C16 120.0 (2) C11—C16—C15 119.8 (2)
C12—C11—N1 120.1 (2) C11—C16—H16 115.2
C16—C11—N1 119.9 (2) C15—C16—H16 124.9
C4—C5—C6 121.8 (2) C14—C13—C12 120.2 (2)
C4—C5—H5 125.7 C14—C13—H13 120.7
C6—C5—H5 112.4 C12—C13—H13 119.0
C5—C4—C3 118.8 (2) C15—C14—C13 119.9 (2)
C5—C4—H4 126.5 C15—C14—H14 121.9
C3—C4—H4 114.3 C13—C14—H14 118.2
O1—C10—N1 120.5 (2) C11—C12—C13 119.9 (2)
O1—C10—C9 123.6 (2) C11—C12—H12 114.3
N1—C10—C9 116.0 (2) C13—C12—H12 125.4
C7—C9—C10 123.7 (2) C14—C15—C16 120.3 (3)
C7—C9—H9 115.6 C14—C15—H15 121.9
C10—C9—H9 120.6 C16—C15—H15 117.8
C10—N1—C1—C2 178.9 (2) C11—N1—C10—C9 178.5 (2)
C11—N1—C1—C2 −0.8 (3) O1—C10—C9—C7 −179.2 (2)
C10—N1—C1—C6 −1.0 (3) N1—C10—C9—C7 1.6 (4)
C11—N1—C1—C6 179.3 (2) C1—C2—C3—C4 −1.2 (4)
C2—C1—C6—C5 1.5 (3) C5—C4—C3—C2 1.4 (4)
N1—C1—C6—C5 −178.6 (2) C10—C9—C7—C6 0.5 (4)
C2—C1—C6—C7 −176.9 (2) C10—C9—C7—C8 −178.7 (2)
N1—C1—C6—C7 3.0 (3) C5—C6—C7—C9 178.9 (2)
N1—C1—C2—C3 179.8 (2) C1—C6—C7—C9 −2.8 (3)
C6—C1—C2—C3 −0.3 (3) C5—C6—C7—C8 −1.9 (3)
C10—N1—C11—C12 −93.2 (2) C1—C6—C7—C8 176.4 (2)
C1—N1—C11—C12 86.6 (3) C12—C11—C16—C15 0.5 (4)
C10—N1—C11—C16 87.5 (3) N1—C11—C16—C15 179.7 (2)
C1—N1—C11—C16 −92.7 (3) C12—C13—C14—C15 −0.4 (4)
C1—C6—C5—C4 −1.3 (3) C16—C11—C12—C13 0.4 (4)
C7—C6—C5—C4 177.0 (2) N1—C11—C12—C13 −178.9 (2)
C6—C5—C4—C3 −0.1 (4) C14—C13—C12—C11 −0.4 (4)
C1—N1—C10—O1 179.5 (2) C13—C14—C15—C16 1.3 (4)
C11—N1—C10—O1 −0.7 (3) C11—C16—C15—C14 −1.3 (4)
C1—N1—C10—C9 −1.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C14—H14···O1i 1.13 2.37 3.272 (3) 135
C4—H4···O1ii 1.09 2.63 3.380 (3) 125
C8—H8A···Cg1iii 1.11 2.73 3.382 (4) 165

Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) x−1, y, z; (iii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PR2017).

References

  1. Bondensgaard, K. & Jacobsen, J. P. (1999). Bioconjugate Chem.10, 735–744. [DOI] [PubMed]
  2. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  3. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Fürstenberg, A., Julliard, M. D., Deligeorgiev, T. G., Gadjev, N. I., Vasilev, A. A. & Vauthey, E. (2006). J. Am. Chem. Soc.128, 7661–7669. [DOI] [PubMed]
  7. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  8. Kovalska, V. B., Tokar, V. P., Losytskyy, M. Yu., Deligeorgiev, T. G., Vasilev, A. A., Gadjev, N. I., Drexhage, K. H. & Yarmoluk, S. M. (2006). J. Biochem. Biophys. Methods, 68, 155–165. [DOI] [PubMed]
  9. Martínez, R. & Chacón-García, L. (2005). Curr. Med. Chem.12, 127–151. [DOI] [PubMed]
  10. Perekalin, V. V. & Lerner, O. M. (1951). Zh. Obshch. Khim.21, 1995–2001.
  11. Rajnikant, Gupta, V. K., Deshmukh, M. B., Varghese, B. & Dinesh (2002). Kristallografiya (Crystallogr. Rep.), 47, 494–496.
  12. Schenkel, H. & Aeberli, M. (1957). US Patent 2 776 983.
  13. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  14. Sheldrick, W. S. & Morr, M. (1981). Acta Cryst. B37, 733–734.
  15. Shishkina, S. V., Shishkin, O. V., Ukrainets, I. V. & Sidorenko, L. V. (2005). Acta Cryst. E61, o4180–o4182.
  16. Staerk, D., Hamed, A. A., Pedersen, E. B. & Jacobsen, J. P. (1997). Bioconjugate Chem.8, 869–877. [DOI] [PubMed]
  17. Vasilev, A. A., Deligeorgiev, T. G., Gadjev, N. I. & Drexhage, K. H. (2005). Dyes Pigm.66, 135–142.
  18. Vincente, J., Abad, J.-A., López, J.-A., Jones, P. J., Najera, C. & Botella-Segura, L. (2005). Organometallics, 24, 5044–5057.
  19. Zipper, H., Brunner, H., Bernhagen, J. & Vitzthum, F. (2004). Nucleic Acids Res.32, E103, 1–10. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807061727/pr2017sup1.cif

e-64-00o72-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061727/pr2017Isup2.hkl

e-64-00o72-Isup2.hkl (143.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES