Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o87. doi: 10.1107/S1600536807062095

2,2-Dichloro-N-(2,5-dichloro­phen­yl)acetamide

B Thimme Gowda a,*, Sabine Foro b, Hartmut Fuess b
PMCID: PMC2915043  PMID: 21200964

Abstract

The conformation of the N—H bond in the title compound, C8H5Cl4NO, is syn to the 2-chloro substituent and anti to the 5-chloro substituent in the aromatic ring. The bond parameters are similar to those in 2,2-dichloro-N-phenyl­acetamide and other acetanilides. In the crystal structure, the mol­ecules are linked into chains through N—H⋯O hydrogen bonding.

Related literature

For related literature, see: Gowda et al. (2001, 2006, 2007a ,b ,c ); Shilpa & Gowda (2007).graphic file with name e-64-00o87-scheme1.jpg

Experimental

Crystal data

  • C8H5Cl4NO

  • M r = 272.93

  • Monoclinic, Inline graphic

  • a = 4.6977 (4) Å

  • b = 11.509 (2) Å

  • c = 19.888 (3) Å

  • β = 95.23 (1)°

  • V = 1070.8 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 9.77 mm−1

  • T = 299 (2) K

  • 0.60 × 0.08 × 0.05 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968 T min = 0.367, T max = 0.591

  • 4168 measured reflections

  • 1917 independent reflections

  • 1420 reflections with I > 2σ(I)

  • R int = 0.116

  • 3 standard reflections frequency: 120 min intensity decay: 2.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.073

  • wR(F 2) = 0.217

  • S = 1.03

  • 1917 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.72 e Å−3

Data collection: CAD-4-PC Version (Enraf–Nonius, 1996); cell refinement: CAD-4-PC Version; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062095/bt2637sup1.cif

e-64-00o87-sup1.cif (14.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062095/bt2637Isup2.hkl

e-64-00o87-Isup2.hkl (94.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.98 (6) 1.90 (6) 2.851 (4) 162 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, the structure of N-(2,5-dichlorophenyl)-2,2- dichloroacetamide (25DCPDCA) has been determined to study the effect of substituents on the structures of N-aromatic amides (Gowda et al., 2001, 2006; 2007a, b</i, c</i). The conformation of the N—H bond in 25DCPDCA is syn to the 2-chloro substituent and anti to the 5-chloro substituent in the aromatic ring (Fig. 1), in contrast to syn conformation observed with respect to both the 2- and 3-chloro substituents in N-(2,3-dichlorophenyl)-2,2-dichloroacetamide (23DCPDCA) (Gowda et al., 2007c), 2-chloro substituent in N-(2-chlorophenyl)-2,2-dichloroacetamide (2CPDCA)(Gowda et al., 2001), 3-chloro substituent in N-(3,4-dichlorophenyl)-2,2-dichloroacetamide (34DCPDCA)(Gowda et al., 2007b),and 2- and 3-chloro substituents in N-(2,3-dichlorophenyl)-acetamide (23DCPA)(Gowda et al., 2007a), and anti conformation observed with respect to the 3-chloro substituent in the N-(3-chlorophenyl)-2,2-dichloroacetamide (3CPDCA)(Gowda et al., 2006). The bond parameters in 25DCPDCA are similar to those in N-(phenyl)-2,2-dichloroacetamide, 2CPDCA, 3CPDCA, 23DCPDCA, 34DCPDCA, 23DCPA and other acetanilides (Gowda et al., 2001, 2006; 2007a, b</i, b</i). The molecules in 25DCPDCA are linked into chains through N—H···O hydrogen bonding (Table 1 and Fig.2).

Experimental

The title compound was prepared according to the literature method (Shilpa and Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa and Gowda, 2007). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The H atoms bonded to C were positioned with idealized geometry using a riding model with C—H = 0.93–0.98 Å. The NH atom was located in difference map and its coordinates were refined. Uiso(H) values were set equal to 1.2 Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C8H5Cl4NO F000 = 544
Mr = 272.93 Dx = 1.693 Mg m3
Monoclinic, P21/c Cu Kα radiation λ = 1.54180 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 4.6977 (4) Å θ = 7.7–20.2º
b = 11.509 (2) Å µ = 9.77 mm1
c = 19.888 (3) Å T = 299 (2) K
β = 95.23 (1)º Needle, colourless
V = 1070.8 (3) Å3 0.60 × 0.08 × 0.05 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.116
Radiation source: fine-focus sealed tube θmax = 67.0º
Monochromator: graphite θmin = 4.4º
T = 299(2) K h = 0→5
ω/2θ scans k = −13→12
Absorption correction: ψ scan(North et al., 1968 l = −23→23
Tmin = 0.367, Tmax = 0.591 3 standard reflections
4168 measured reflections every 120 min
1917 independent reflections intensity decay: 2.0%
1420 reflections with I > 2σ(I)

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.073   w = 1/[σ2(Fo2) + (0.144P)2 + 0.518P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.217 (Δ/σ)max = 0.033
S = 1.03 Δρmax = 0.80 e Å3
1917 reflections Δρmin = −0.72 e Å3
131 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0038 (10)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3994 (8) 0.7062 (3) 0.43590 (17) 0.0324 (8)
C2 0.2953 (8) 0.8112 (3) 0.45736 (19) 0.0367 (8)
C3 0.3981 (10) 0.8573 (3) 0.5194 (2) 0.0439 (10)
H3 0.3256 0.9273 0.5337 0.053*
C4 0.6063 (10) 0.8001 (4) 0.55998 (19) 0.0440 (9)
H4 0.6764 0.8313 0.6014 0.053*
C5 0.7093 (9) 0.6956 (4) 0.53810 (19) 0.0389 (9)
C6 0.6085 (8) 0.6475 (3) 0.47678 (18) 0.0345 (8)
H6 0.6797 0.5768 0.4630 0.041*
C7 0.4478 (8) 0.6066 (3) 0.33005 (18) 0.0344 (8)
C8 0.2734 (8) 0.5542 (4) 0.26817 (19) 0.0411 (9)
H8 0.0932 0.5238 0.2822 0.049*
N1 0.2888 (7) 0.6573 (3) 0.37354 (16) 0.0379 (7)
H1N 0.080 (12) 0.653 (4) 0.365 (2) 0.045*
O1 0.7058 (6) 0.5995 (4) 0.33605 (15) 0.0578 (10)
Cl1 0.0411 (3) 0.88522 (9) 0.40600 (6) 0.0526 (4)
Cl2 0.9670 (3) 0.62104 (10) 0.58918 (5) 0.0529 (4)
Cl3 0.4607 (4) 0.4414 (2) 0.23486 (12) 0.1290 (11)
Cl4 0.1977 (5) 0.66320 (18) 0.20858 (7) 0.0964 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0219 (16) 0.0374 (17) 0.0371 (17) −0.0020 (15) −0.0014 (13) −0.0001 (14)
C2 0.0262 (18) 0.0368 (18) 0.047 (2) 0.0029 (15) 0.0014 (15) 0.0014 (15)
C3 0.043 (2) 0.0387 (19) 0.050 (2) 0.0025 (19) 0.0064 (19) −0.0080 (17)
C4 0.044 (2) 0.049 (2) 0.0380 (19) −0.002 (2) −0.0037 (17) −0.0059 (16)
C5 0.0312 (19) 0.046 (2) 0.0383 (18) −0.0034 (17) −0.0028 (15) 0.0030 (15)
C6 0.0234 (18) 0.0380 (17) 0.0415 (19) 0.0014 (16) 0.0002 (15) −0.0038 (15)
C7 0.0174 (17) 0.0484 (19) 0.0366 (18) −0.0005 (15) −0.0015 (14) −0.0015 (15)
C8 0.0202 (17) 0.059 (2) 0.0424 (19) −0.0010 (18) −0.0059 (15) −0.0060 (18)
N1 0.0157 (14) 0.0525 (17) 0.0442 (17) 0.0034 (15) −0.0044 (12) −0.0095 (14)
O1 0.0155 (14) 0.104 (3) 0.0529 (18) 0.0009 (16) −0.0025 (12) −0.0211 (16)
Cl1 0.0420 (7) 0.0528 (6) 0.0619 (7) 0.0160 (5) −0.0019 (5) 0.0066 (4)
Cl2 0.0484 (7) 0.0613 (7) 0.0456 (6) 0.0052 (5) −0.0138 (5) 0.0056 (4)
Cl3 0.0671 (10) 0.1554 (19) 0.1553 (17) 0.0449 (12) −0.0398 (11) −0.1137 (16)
Cl4 0.1098 (15) 0.1129 (13) 0.0588 (9) −0.0326 (12) −0.0344 (9) 0.0310 (8)

Geometric parameters (Å, °)

C1—C2 1.386 (5) C5—Cl2 1.735 (4)
C1—C6 1.392 (5) C6—H6 0.9300
C1—N1 1.417 (5) C7—O1 1.209 (5)
C2—C3 1.389 (6) C7—N1 1.328 (5)
C2—Cl1 1.724 (4) C7—C8 1.538 (5)
C3—C4 1.377 (6) C8—Cl3 1.734 (4)
C3—H3 0.9300 C8—Cl4 1.740 (4)
C4—C5 1.381 (6) C8—H8 0.9800
C4—H4 0.9300 N1—H1N 0.98 (6)
C5—C6 1.383 (5)
C2—C1—C6 119.6 (3) C5—C6—C1 119.2 (3)
C2—C1—N1 120.3 (3) C5—C6—H6 120.4
C6—C1—N1 120.1 (3) C1—C6—H6 120.4
C1—C2—C3 120.2 (4) O1—C7—N1 125.7 (4)
C1—C2—Cl1 119.6 (3) O1—C7—C8 120.5 (4)
C3—C2—Cl1 120.2 (3) N1—C7—C8 113.8 (3)
C4—C3—C2 120.6 (4) C7—C8—Cl3 110.3 (3)
C4—C3—H3 119.7 C7—C8—Cl4 108.9 (3)
C2—C3—H3 119.7 Cl3—C8—Cl4 111.0 (2)
C3—C4—C5 118.8 (4) C7—C8—H8 108.9
C3—C4—H4 120.6 Cl3—C8—H8 108.9
C5—C4—H4 120.6 Cl4—C8—H8 108.9
C4—C5—C6 121.7 (4) C7—N1—C1 124.1 (3)
C4—C5—Cl2 119.5 (3) C7—N1—H1N 119 (3)
C6—C5—Cl2 118.9 (3) C1—N1—H1N 117 (3)
C6—C1—C2—C3 −0.3 (6) C2—C1—C6—C5 −0.2 (6)
N1—C1—C2—C3 178.1 (4) N1—C1—C6—C5 −178.7 (3)
C6—C1—C2—Cl1 178.8 (3) O1—C7—C8—Cl3 25.6 (5)
N1—C1—C2—Cl1 −2.8 (5) N1—C7—C8—Cl3 −154.3 (3)
C1—C2—C3—C4 0.7 (6) O1—C7—C8—Cl4 −96.5 (4)
Cl1—C2—C3—C4 −178.3 (3) N1—C7—C8—Cl4 83.6 (4)
C2—C3—C4—C5 −0.6 (7) O1—C7—N1—C1 −3.3 (7)
C3—C4—C5—C6 0.0 (7) C8—C7—N1—C1 176.5 (3)
C3—C4—C5—Cl2 −178.8 (3) C2—C1—N1—C7 138.6 (4)
C4—C5—C6—C1 0.4 (6) C6—C1—N1—C7 −43.0 (6)
Cl2—C5—C6—C1 179.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.98 (6) 1.90 (6) 2.851 (4) 162 (4)

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2637).

References

  1. Enraf–Nonius (1996). CAD-4-PC Software. Version 1.2. Enraf–Nonius, Delft, The Netherlands.
  2. Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2631–o2632.
  3. Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o3875.
  4. Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o4708.
  5. Gowda, B. T., Paulus, H. & Fuess, H. (2001). Z. Naturforsch. Teil A, 56, 386–394.
  6. Gowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. T. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675–682.
  7. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  8. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  9. Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.
  10. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  11. Stoe & Cie (1987). REDU4 Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062095/bt2637sup1.cif

e-64-00o87-sup1.cif (14.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062095/bt2637Isup2.hkl

e-64-00o87-Isup2.hkl (94.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES