Abstract
The crystal structure of the title compound, C14H11ClO2, is similar to those of phenyl benzoate, 4-methylphenyl benzoate and 4-methylphenyl 4-methylbenzoate. The dihedral angle between the phenyl and benzene rings is 51.86 (4)°. The molecules crystallize in planes parallel to (
02).
Related literature
For related literature, see: Adams & Morsi (1976 ▶); Gowda, Foro, Babitha & Fuess (2007a
▶,b
▶,c
▶,d
▶,e
▶); Gowda, Foro, Nayak & Fuess (2007a
▶,b
▶); Nayak & Gowda (2007 ▶).
Experimental
Crystal data
C14H11ClO2
M r = 246.68
Monoclinic,
a = 14.6932 (4) Å
b = 11.3269 (3) Å
c = 7.2386 (2) Å
β = 101.050 (3)°
V = 1182.37 (6) Å3
Z = 4
Mo Kα radiation
μ = 0.31 mm−1
T = 100 (2) K
0.40 × 0.28 × 0.08 mm
Data collection
Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006 ▶) T min = 0.887, T max = 0.976
17127 measured reflections
2407 independent reflections
1889 reflections with I > 2σ(I)
R int = 0.023
Refinement
R[F 2 > 2σ(F 2)] = 0.034
wR(F 2) = 0.096
S = 1.04
2407 reflections
155 parameters
H-atom parameters constrained
Δρmax = 1.04 e Å−3
Δρmin = −0.29 e Å−3
Data collection: CrysAlis CCD (Oxford Diffraction, 2006 ▶); cell refinement: CrysAlis RED; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 ▶); molecular graphics: PLATON (Spek 2003 ▶) and ORTEP-3 (Farrugia, 1997 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062137/bt2647sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062137/bt2647Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.
supplementary crystallographic information
Comment
In the present work, the structure of 4-methylphenyl 4-chlorobenzoate (4MP4CBA) has been determined, as part of a study of substituent effects on the structures of industrially significant compounds (Gowda, Foro, Babitha & Fuess, 2007a, 2007b; Gowda, Foro, Nayak & Fuess, 2007a, 2007b). The structure of 4MP4CBA (Fig. 1) resembles those of phenyl benzoate (PBA)(Adams & Morsi, 1976), 4-methylphenyl benzoate (4MPBA) (Gowda, Foro, Nayak & Fuess, 2007b), 4-methylphenyl 4-methylbenzoate (4MP4MBA)(Gowda, Foro, Babitha & Fuess, 2007b) and other aryl benzoates (Gowda, Foro, Babitha & Fuess, 2007a; Gowda, Foro, Nayak & Fuess, 2007a). The bond parameters in 4MP4CBA are similar to those in PBA, 4MPBA, 4MP4MBA and other benzoates (Gowda, Foro, Babitha & Fuess, 2007a, 2007b; Gowda, Foro, Nayak & Fuess, 2007a, 2007b). The molecules in the title compound are packed into plane parallel to (-1 0 2) (Fig. 2).
Experimental
The title compound was prepared according to a literature method (Nayak & Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2007). Single crystals of the title compound were obtained by slow evaporation of an ethanolic solution and used for X-ray diffraction studies at room temperature.
Refinement
The H atoms of the methyl groups were positioned with idealized geometry using a riding model with C—H = 0.98 Å. The other H atoms were located in difference map and their positions refined.
Figures
Fig. 1.
Molecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.
Fig. 2.
Molecular packing of the title compound.
Crystal data
| C14H11ClO2 | F000 = 512 |
| Mr = 246.68 | Dx = 1.386 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation λ = 0.71073 Å |
| Hall symbol: -P2ybc | Cell parameters from 5716 reflections |
| a = 14.6932 (4) Å | θ = 2.2–26.9º |
| b = 11.3269 (3) Å | µ = 0.31 mm−1 |
| c = 7.2386 (2) Å | T = 100 (2) K |
| β = 101.050 (3)º | Prism, colourless |
| V = 1182.37 (6) Å3 | 0.40 × 0.28 × 0.08 mm |
| Z = 4 |
Data collection
| Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector | 2407 independent reflections |
| Radiation source: Enhance (Mo) X-ray Source | 1889 reflections with I > 2σ(I) |
| Monochromator: graphite | Rint = 0.023 |
| Detector resolution: 8.4012 pixels mm-1 | θmax = 26.4º |
| T = 100(2) K | θmin = 2.3º |
| Rotation method data acquisition using ω scans. | h = −18→18 |
| Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2006) | k = −13→14 |
| Tmin = 0.887, Tmax = 0.976 | l = −9→9 |
| 17127 measured reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
| wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.0437P)2 + 0.873P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.04 | (Δ/σ)max < 0.001 |
| 2407 reflections | Δρmax = 1.04 e Å−3 |
| 155 parameters | Δρmin = −0.29 e Å−3 |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | −0.39495 (3) | 0.43951 (5) | 0.00266 (7) | 0.03131 (16) | |
| O1 | 0.06211 (8) | 0.40950 (10) | 0.28512 (17) | 0.0203 (3) | |
| O2 | 0.02463 (9) | 0.23571 (11) | 0.40524 (18) | 0.0264 (3) | |
| C1 | −0.27915 (12) | 0.40681 (16) | 0.0929 (2) | 0.0204 (4) | |
| C2 | −0.25731 (12) | 0.30158 (16) | 0.1886 (2) | 0.0214 (4) | |
| H2 | −0.3045 | 0.2473 | 0.2043 | 0.026* | |
| C3 | −0.16463 (12) | 0.27738 (15) | 0.2611 (2) | 0.0193 (4) | |
| H3 | −0.1481 | 0.2058 | 0.3275 | 0.023* | |
| C4 | −0.09585 (11) | 0.35718 (15) | 0.2371 (2) | 0.0172 (3) | |
| C5 | −0.11937 (12) | 0.46239 (15) | 0.1393 (2) | 0.0184 (4) | |
| H5 | −0.0723 | 0.5167 | 0.1224 | 0.022* | |
| C6 | −0.21182 (12) | 0.48738 (15) | 0.0668 (2) | 0.0196 (4) | |
| H6 | −0.2287 | 0.5588 | 0.0002 | 0.024* | |
| C7 | 0.00171 (12) | 0.32497 (15) | 0.3186 (2) | 0.0188 (4) | |
| C8 | 0.15790 (11) | 0.38716 (16) | 0.3334 (2) | 0.0185 (4) | |
| C9 | 0.19650 (12) | 0.28504 (15) | 0.2769 (2) | 0.0197 (4) | |
| H9 | 0.1583 | 0.2245 | 0.2123 | 0.024* | |
| C10 | 0.29215 (12) | 0.27312 (15) | 0.3169 (2) | 0.0208 (4) | |
| H10 | 0.3193 | 0.2028 | 0.2806 | 0.025* | |
| C11 | 0.34947 (12) | 0.36115 (16) | 0.4084 (2) | 0.0222 (4) | |
| C12 | 0.30820 (12) | 0.46299 (16) | 0.4619 (2) | 0.0224 (4) | |
| H12 | 0.3462 | 0.5244 | 0.5243 | 0.027* | |
| C13 | 0.21257 (12) | 0.47634 (15) | 0.4254 (2) | 0.0199 (4) | |
| H13 | 0.1851 | 0.5460 | 0.4633 | 0.024* | |
| C14 | 0.45367 (13) | 0.34475 (18) | 0.4483 (3) | 0.0327 (5) | |
| H14A | 0.4683 | 0.2603 | 0.4581 | 0.049* | |
| H14B | 0.4805 | 0.3840 | 0.5669 | 0.049* | |
| H14C | 0.4797 | 0.3794 | 0.3457 | 0.049* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0190 (2) | 0.0368 (3) | 0.0365 (3) | 0.00206 (19) | 0.00115 (18) | 0.0060 (2) |
| O1 | 0.0181 (6) | 0.0181 (6) | 0.0245 (6) | −0.0002 (5) | 0.0033 (5) | 0.0019 (5) |
| O2 | 0.0240 (7) | 0.0247 (7) | 0.0303 (7) | 0.0022 (5) | 0.0044 (5) | 0.0110 (6) |
| C1 | 0.0170 (8) | 0.0249 (9) | 0.0192 (9) | 0.0012 (7) | 0.0032 (7) | −0.0033 (7) |
| C2 | 0.0224 (9) | 0.0220 (9) | 0.0200 (9) | −0.0038 (7) | 0.0049 (7) | −0.0003 (7) |
| C3 | 0.0254 (9) | 0.0158 (8) | 0.0168 (8) | −0.0002 (7) | 0.0043 (7) | 0.0003 (7) |
| C4 | 0.0206 (8) | 0.0167 (8) | 0.0149 (8) | 0.0011 (7) | 0.0052 (6) | −0.0018 (7) |
| C5 | 0.0221 (8) | 0.0160 (8) | 0.0184 (8) | −0.0012 (7) | 0.0070 (7) | −0.0010 (7) |
| C6 | 0.0239 (9) | 0.0168 (8) | 0.0190 (8) | 0.0033 (7) | 0.0062 (7) | 0.0012 (7) |
| C7 | 0.0215 (8) | 0.0184 (9) | 0.0171 (8) | −0.0022 (7) | 0.0051 (7) | −0.0016 (7) |
| C8 | 0.0183 (8) | 0.0209 (9) | 0.0167 (8) | 0.0008 (7) | 0.0047 (7) | 0.0041 (7) |
| C9 | 0.0252 (9) | 0.0173 (9) | 0.0166 (8) | −0.0010 (7) | 0.0043 (7) | 0.0000 (7) |
| C10 | 0.0265 (9) | 0.0178 (9) | 0.0200 (8) | 0.0031 (7) | 0.0087 (7) | 0.0009 (7) |
| C11 | 0.0221 (9) | 0.0234 (9) | 0.0226 (9) | 0.0010 (7) | 0.0080 (7) | 0.0037 (7) |
| C12 | 0.0241 (9) | 0.0200 (9) | 0.0231 (9) | −0.0041 (7) | 0.0045 (7) | −0.0005 (7) |
| C13 | 0.0239 (9) | 0.0166 (8) | 0.0205 (9) | 0.0013 (7) | 0.0074 (7) | −0.0002 (7) |
| C14 | 0.0221 (9) | 0.0310 (11) | 0.0448 (12) | 0.0012 (8) | 0.0061 (8) | 0.0015 (9) |
Geometric parameters (Å, °)
| Cl1—C1 | 1.7414 (17) | C8—C13 | 1.380 (2) |
| O1—C7 | 1.359 (2) | C8—C9 | 1.384 (2) |
| O1—C8 | 1.407 (2) | C9—C10 | 1.386 (2) |
| O2—C7 | 1.203 (2) | C9—H9 | 0.9500 |
| C1—C2 | 1.385 (3) | C10—C11 | 1.389 (3) |
| C1—C6 | 1.385 (3) | C10—H10 | 0.9500 |
| C2—C3 | 1.390 (2) | C11—C12 | 1.392 (3) |
| C2—H2 | 0.9500 | C11—C14 | 1.514 (2) |
| C3—C4 | 1.391 (2) | C12—C13 | 1.387 (2) |
| C3—H3 | 0.9500 | C12—H12 | 0.9500 |
| C4—C5 | 1.395 (2) | C13—H13 | 0.9500 |
| C4—C7 | 1.487 (2) | C14—H14A | 0.9800 |
| C5—C6 | 1.388 (2) | C14—H14B | 0.9800 |
| C5—H5 | 0.9500 | C14—H14C | 0.9800 |
| C6—H6 | 0.9500 | ||
| C7—O1—C8 | 119.05 (13) | C13—C8—O1 | 116.77 (15) |
| C2—C1—C6 | 122.14 (16) | C9—C8—O1 | 121.61 (15) |
| C2—C1—Cl1 | 119.12 (14) | C8—C9—C10 | 118.44 (16) |
| C6—C1—Cl1 | 118.74 (14) | C8—C9—H9 | 120.8 |
| C1—C2—C3 | 118.36 (16) | C10—C9—H9 | 120.8 |
| C1—C2—H2 | 120.8 | C9—C10—C11 | 121.84 (16) |
| C3—C2—H2 | 120.8 | C9—C10—H10 | 119.1 |
| C2—C3—C4 | 120.50 (16) | C11—C10—H10 | 119.1 |
| C2—C3—H3 | 119.8 | C10—C11—C12 | 118.09 (16) |
| C4—C3—H3 | 119.8 | C10—C11—C14 | 120.10 (16) |
| C3—C4—C5 | 120.19 (16) | C12—C11—C14 | 121.81 (17) |
| C3—C4—C7 | 117.33 (15) | C13—C12—C11 | 121.12 (17) |
| C5—C4—C7 | 122.48 (15) | C13—C12—H12 | 119.4 |
| C6—C5—C4 | 119.67 (16) | C11—C12—H12 | 119.4 |
| C6—C5—H5 | 120.2 | C8—C13—C12 | 119.11 (16) |
| C4—C5—H5 | 120.2 | C8—C13—H13 | 120.4 |
| C1—C6—C5 | 119.14 (16) | C12—C13—H13 | 120.4 |
| C1—C6—H6 | 120.4 | C11—C14—H14A | 109.5 |
| C5—C6—H6 | 120.4 | C11—C14—H14B | 109.5 |
| O2—C7—O1 | 123.92 (15) | H14A—C14—H14B | 109.5 |
| O2—C7—C4 | 124.41 (15) | C11—C14—H14C | 109.5 |
| O1—C7—C4 | 111.66 (14) | H14A—C14—H14C | 109.5 |
| C13—C8—C9 | 121.39 (16) | H14B—C14—H14C | 109.5 |
| C6—C1—C2—C3 | 0.4 (3) | C3—C4—C7—O1 | 179.72 (14) |
| Cl1—C1—C2—C3 | −179.45 (13) | C5—C4—C7—O1 | −0.1 (2) |
| C1—C2—C3—C4 | −0.2 (3) | C7—O1—C8—C13 | −134.88 (16) |
| C2—C3—C4—C5 | −0.2 (3) | C7—O1—C8—C9 | 50.6 (2) |
| C2—C3—C4—C7 | −179.97 (15) | C13—C8—C9—C10 | 0.8 (3) |
| C3—C4—C5—C6 | 0.3 (2) | O1—C8—C9—C10 | 174.97 (14) |
| C7—C4—C5—C6 | −179.89 (15) | C8—C9—C10—C11 | −1.1 (3) |
| C2—C1—C6—C5 | −0.2 (3) | C9—C10—C11—C12 | 0.6 (3) |
| Cl1—C1—C6—C5 | 179.59 (13) | C9—C10—C11—C14 | −179.67 (17) |
| C4—C5—C6—C1 | −0.1 (3) | C10—C11—C12—C13 | 0.2 (3) |
| C8—O1—C7—O2 | 7.9 (2) | C14—C11—C12—C13 | −179.55 (17) |
| C8—O1—C7—C4 | −172.71 (14) | C9—C8—C13—C12 | 0.0 (3) |
| C3—C4—C7—O2 | −0.9 (3) | O1—C8—C13—C12 | −174.50 (15) |
| C5—C4—C7—O2 | 179.27 (17) | C11—C12—C13—C8 | −0.5 (3) |
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2647).
References
- Adams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345–1347.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007a). Acta Cryst. E63, o3801.
- Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007b). Acta Cryst. E63, o3867.
- Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007c). Acta Cryst. E63, o3876.
- Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007d). Acta Cryst. E63, o3877.
- Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007e). Acta Cryst. E63, o4286.
- Gowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007a). Acta Cryst. E63, o3507.
- Gowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007b). Acta Cryst. E63, o3563.
- Nayak, R. & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62 In the press.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062137/bt2647sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062137/bt2647Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


