Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o91. doi: 10.1107/S1600536807062678

2-Methyl-2-(4-nitro­phenyl­sulfanyl)­propanoic acid

Gabriel Navarrete-Vázquez a, Rafael Villalobos-Molina b, Samuel Estrada-Soto a, Rolffy Ortiz-Andrade a, Hugo Tlahuext c,*
PMCID: PMC2915046  PMID: 21200968

Abstract

The title compound, C10H11NO4S, is of inter­est with respect to its biological activity. The mol­ecules are linked into centrosymmetric dimers by inter­molecular O—H⋯O hydrogen bonds and the dimers are further connected into chains by weak C—H⋯O inter­actions.

Related literature

For related literature on fibrate structures and biological activity, see: Henry et al. (2003); Rath et al. (2005); Djinović et al. (1989); Thorp (1962); Thorp & Waring (1962); Miller & Spence (1998); Forcheron et al. (2002). For related literature, see: Bernstein et al. (1995); Desiraju (2002).graphic file with name e-64-00o91-scheme1.jpg

Experimental

Crystal data

  • C10H11NO4S

  • M r = 241.26

  • Triclinic, Inline graphic

  • a = 6.9382 (8) Å

  • b = 9.4500 (11) Å

  • c = 9.6395 (11) Å

  • α = 66.371 (2)°

  • β = 87.995 (2)°

  • γ = 88.298 (2)°

  • V = 578.60 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 273 (2) K

  • 0.32 × 0.23 × 0.18 mm

Data collection

  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.92, T max = 0.95

  • 5660 measured reflections

  • 2036 independent reflections

  • 1718 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.123

  • S = 1.08

  • 2036 reflections

  • 148 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus NT (Bruker, 2000); data reduction: SAINT-Plus NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Bruker, 2000); software used to prepare material for publication: PLATON (Spek, 2003) and publCIF (Westrip, 2007).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062678/ln2010sup1.cif

e-64-00o91-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062678/ln2010Isup2.hkl

e-64-00o91-Isup2.hkl (100.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3i 0.82 1.84 2.656 (3) 175
C2—H2⋯O2ii 0.93 2.46 3.211 (3) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT) under grant No. 3562P-E and PROMEP-SEP UAEMOR-PTC-131 (GNV).

supplementary crystallographic information

Comment

Fibrates, such as bezafibrate, clofibric acid and fenofibrate (Henry et al., 2003; Rath et al., 2005; Djinović et al., 1989), which are ligands for the nuclear receptor PPAR (peroxisome proliferator-activated receptor), are used as therapeutic agents in the treatment of hyperlipidemia, heart disease and diabetic complications in humans. The fibrates are a widely used class of lipid-modifying agents that decrease plasma triglycerides (Thorp, 1962; Miller & Spence, 1998; Forcheron et al., 2002). The fibric acid pharmacophore has been of interest to medicinal chemists ever since the initial discovery that ethyl chlorophenoxyisobutyrate possessed hypolipidemic properties (Thorp & Waring, 1962).

In order to assist our knowledge about the electronic and steric requirements for such compounds to to show antihyperlipidemic activity, we have determined the crystal structure of the title compound, (I), which is an analogue of clofibric acid with a thioisobutirate side chain. A view of the molecular structure of (I) and hydrogen bonded dimers is given in Fig. 1. The crystal structure is permeated by strong O—H···O hydrogen-bonding interactions, as well as weak C—H···O interactions (Tablel 1) (Desiraju, 2002). The O—H···O hydrogen bonding interactions form centrosymmetric dimers and generate rings that can be described as having a graph set motif of R22(8) (Bernstein et al., 1995).

Experimental

A mixture of 4-nitrothiophenol (1.0 g, 6.40 mmol), potassium carbonate (1.94 g, 14.1 mmol) in acetonitrile, was added dropwise to 1.04 ml of ethyl 2-bromo-2-methylpropionate (1.37 g, 7.04 mmol). The mixture was stirred and heated under reflux for 6 h. After that, the mixture was poured onto cold water. The resulting oil was treated with a mixture of tetrahydrofuran/methanol/H2O (3:2:1, v/v/v, 6 ml/mmol), and LiOH was added (5 equiv). The mixture was stirred at room temperature for 3 h. Then, HCl solution (10% v/v) was added, and most of the organic solvents removed in vacuo. The partly solid residue was extracted with CH2Cl2 (3 x 10 ml), dried with Na2SO4, filtered, and concentrated in vacuo to give a yellow solid (m.p. 394.9 K). Single crystals of (I) were obtained from acetonitrile.

Refinement

All the H atoms were constrained using the riding-model approximation [C—Haryl = 0.95 Å, Uiso(Haryl) = 1.2 Ueq(Caryl); C—Hmethyl = 0.98 Å, Uiso(Hmethyl) = 1.5Ueq(Cmethyl)]; O—H = 0.82 Å, Uiso(Hhydroxyl) = 1.5Ueq(O)].

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing 50% probability displacement ellipsoids and the atomic numbering. H atoms are shown as small spheres of arbitrary radius. The intermolecular hydrogen bonds O4—H4···O3 forming the R22(8) motif are shown as dotted lines.

Crystal data

C10H11NO4S Z = 2
Mr = 241.26 F000 = 252
Triclinic, P1 Dx = 1.385 Mg m3
Hall symbol: -P 1 Melting point: 394.9 K
a = 6.9382 (8) Å Mo Kα radiation λ = 0.71073 Å
b = 9.4500 (11) Å Cell parameters from 2036 reflections
c = 9.6395 (11) Å θ = 2.3–25º
α = 66.371 (2)º µ = 0.28 mm1
β = 87.995 (2)º T = 273 (2) K
γ = 88.298 (2)º Plate, colourless
V = 578.60 (12) Å3 0.32 × 0.23 × 0.18 mm

Data collection

Bruker CCD area detector diffractometer 2036 independent reflections
Radiation source: fine-focus sealed tube 1718 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.020
T = 273(2) K θmax = 25.0º
φ and ω scans θmin = 2.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 2003) h = −8→8
Tmin = 0.92, Tmax = 0.95 k = −11→11
5660 measured reflections l = −11→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.123   w = 1/[σ2(Fo2) + (0.06P)2 + 0.156P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
2036 reflections Δρmax = 0.28 e Å3
148 parameters Δρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1054 (3) 0.1894 (3) 0.6403 (2) 0.0531 (5)
C2 0.1738 (3) 0.0380 (3) 0.6935 (3) 0.0580 (6)
H2 0.3037 0.0168 0.7153 0.070*
C3 0.0525 (3) −0.0797 (3) 0.7141 (3) 0.0576 (6)
H3 0.0982 −0.1813 0.7509 0.069*
C4 −0.1375 (3) −0.0462 (3) 0.6797 (2) 0.0524 (5)
C5 −0.2096 (4) 0.1026 (3) 0.6234 (3) 0.0608 (6)
H5 −0.3388 0.1231 0.5988 0.073*
C6 −0.0871 (3) 0.2196 (3) 0.6045 (3) 0.0599 (6)
H6 −0.1336 0.3210 0.5669 0.072*
C7 0.2702 (4) 0.3441 (3) 0.8037 (3) 0.0624 (6)
C8 0.3733 (3) 0.1963 (3) 0.9005 (3) 0.0568 (6)
C9 0.0695 (4) 0.3533 (4) 0.8653 (3) 0.0837 (9)
H9A 0.0023 0.2602 0.8821 0.125*
H9B 0.0011 0.4402 0.7936 0.125*
H9C 0.0773 0.3653 0.9592 0.125*
C10 0.3903 (5) 0.4859 (3) 0.7791 (4) 0.0940 (10)
H10A 0.4076 0.4928 0.8745 0.141*
H10B 0.3247 0.5773 0.7119 0.141*
H10C 0.5140 0.4764 0.7354 0.141*
N1 −0.2678 (3) −0.1730 (3) 0.7030 (2) 0.0674 (6)
O1 −0.2015 (3) −0.3028 (2) 0.7498 (3) 0.0997 (7)
O2 −0.4350 (3) −0.1430 (3) 0.6715 (3) 0.1118 (9)
O3 0.2868 (2) 0.0840 (2) 0.98479 (19) 0.0724 (5)
O4 0.5595 (3) 0.1977 (2) 0.8833 (2) 0.0839 (6)
H4 0.6034 0.1101 0.9283 0.126*
S1 0.26504 (9) 0.34147 (7) 0.61287 (7) 0.0636 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0654 (14) 0.0463 (12) 0.0439 (11) 0.0029 (10) −0.0021 (10) −0.0142 (9)
C2 0.0524 (13) 0.0544 (14) 0.0660 (14) 0.0081 (11) −0.0043 (11) −0.0233 (11)
C3 0.0646 (15) 0.0425 (12) 0.0637 (14) 0.0088 (10) 0.0004 (11) −0.0201 (10)
C4 0.0580 (13) 0.0509 (12) 0.0505 (12) 0.0010 (10) 0.0029 (10) −0.0230 (10)
C5 0.0566 (13) 0.0572 (14) 0.0687 (15) 0.0103 (11) −0.0110 (11) −0.0252 (12)
C6 0.0675 (15) 0.0447 (12) 0.0632 (14) 0.0124 (11) −0.0135 (11) −0.0170 (11)
C7 0.0765 (16) 0.0474 (13) 0.0621 (14) 0.0032 (11) −0.0115 (12) −0.0203 (11)
C8 0.0599 (15) 0.0550 (14) 0.0535 (13) −0.0011 (11) −0.0059 (11) −0.0192 (11)
C9 0.090 (2) 0.084 (2) 0.0815 (19) 0.0282 (16) −0.0080 (15) −0.0396 (16)
C10 0.126 (3) 0.0560 (16) 0.102 (2) −0.0089 (16) −0.0276 (19) −0.0311 (16)
N1 0.0681 (14) 0.0593 (13) 0.0789 (14) −0.0041 (11) 0.0051 (11) −0.0323 (11)
O1 0.0975 (15) 0.0514 (12) 0.144 (2) −0.0033 (10) −0.0158 (13) −0.0309 (12)
O2 0.0606 (13) 0.0851 (15) 0.197 (3) −0.0033 (11) −0.0088 (14) −0.0639 (16)
O3 0.0667 (11) 0.0628 (11) 0.0653 (11) −0.0002 (9) 0.0036 (8) −0.0026 (9)
O4 0.0596 (11) 0.0673 (12) 0.0976 (15) −0.0026 (9) −0.0058 (9) −0.0041 (10)
S1 0.0762 (5) 0.0503 (4) 0.0543 (4) −0.0081 (3) −0.0034 (3) −0.0100 (3)

Geometric parameters (Å, °)

C1—C6 1.384 (3) C7—C10 1.531 (4)
C1—C2 1.387 (3) C7—S1 1.851 (2)
C1—S1 1.769 (2) C8—O3 1.208 (3)
C2—C3 1.361 (3) C8—O4 1.296 (3)
C2—H2 0.9300 C9—H9A 0.9600
C3—C4 1.368 (3) C9—H9B 0.9600
C3—H3 0.9300 C9—H9C 0.9600
C4—C5 1.374 (3) C10—H10A 0.9600
C4—N1 1.462 (3) C10—H10B 0.9600
C5—C6 1.364 (3) C10—H10C 0.9600
C5—H5 0.9300 N1—O2 1.206 (3)
C6—H6 0.9300 N1—O1 1.207 (3)
C7—C8 1.508 (3) O4—H4 0.8200
C7—C9 1.508 (4)
C6—C1—C2 119.0 (2) C9—C7—S1 111.51 (18)
C6—C1—S1 120.86 (17) C10—C7—S1 103.62 (19)
C2—C1—S1 120.08 (18) O3—C8—O4 122.9 (2)
C3—C2—C1 120.5 (2) O3—C8—C7 121.8 (2)
C3—C2—H2 119.7 O4—C8—C7 115.3 (2)
C1—C2—H2 119.7 C7—C9—H9A 109.5
C2—C3—C4 119.0 (2) C7—C9—H9B 109.5
C2—C3—H3 120.5 H9A—C9—H9B 109.5
C4—C3—H3 120.5 C7—C9—H9C 109.5
C3—C4—C5 122.1 (2) H9A—C9—H9C 109.5
C3—C4—N1 118.9 (2) H9B—C9—H9C 109.5
C5—C4—N1 119.0 (2) C7—C10—H10A 109.5
C6—C5—C4 118.4 (2) C7—C10—H10B 109.5
C6—C5—H5 120.8 H10A—C10—H10B 109.5
C4—C5—H5 120.8 C7—C10—H10C 109.5
C5—C6—C1 120.9 (2) H10A—C10—H10C 109.5
C5—C6—H6 119.6 H10B—C10—H10C 109.5
C1—C6—H6 119.6 O2—N1—O1 123.1 (2)
C8—C7—C9 111.5 (2) O2—N1—C4 118.7 (2)
C8—C7—C10 111.5 (2) O1—N1—C4 118.2 (2)
C9—C7—C10 112.9 (2) C8—O4—H4 109.5
C8—C7—S1 105.22 (16) C1—S1—C7 102.66 (11)
C6—C1—C2—C3 −1.8 (3) C9—C7—C8—O4 −160.9 (2)
S1—C1—C2—C3 −179.55 (18) C10—C7—C8—O4 −33.6 (3)
C1—C2—C3—C4 0.8 (4) S1—C7—C8—O4 78.0 (2)
C2—C3—C4—C5 0.8 (4) C3—C4—N1—O2 −179.4 (2)
C2—C3—C4—N1 −179.5 (2) C5—C4—N1—O2 0.3 (4)
C3—C4—C5—C6 −1.3 (4) C3—C4—N1—O1 −1.1 (3)
N1—C4—C5—C6 179.0 (2) C5—C4—N1—O1 178.6 (2)
C4—C5—C6—C1 0.3 (4) C6—C1—S1—C7 97.2 (2)
C2—C1—C6—C5 1.2 (4) C2—C1—S1—C7 −85.1 (2)
S1—C1—C6—C5 178.97 (19) C8—C7—S1—C1 68.65 (18)
C9—C7—C8—O3 20.9 (3) C9—C7—S1—C1 −52.4 (2)
C10—C7—C8—O3 148.1 (3) C10—C7—S1—C1 −174.16 (18)
S1—C7—C8—O3 −100.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4···O3i 0.82 1.84 2.656 (3) 175
C2—H2···O2ii 0.93 2.46 3.211 (3) 138

Symmetry codes: (i) −x+1, −y, −z+2; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LN2010).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, D.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2000). SMART (Version 5.618), SAINT-Plus NT (Version 6.04) and SHELXTL-NT (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Desiraju, G. R. (2002). Acc. Chem. Res.35, 565–573. [DOI] [PubMed]
  4. Djinović, K., Globokar, M. & Zupet, P. (1989). Acta Cryst. C45, 772–775.
  5. Forcheron, F., Cachefo, A., Thevenon, S., Pinteur, C. & Beylot, M. (2002). Diabetes, 51, 3486–3491. [DOI] [PubMed]
  6. Henry, R. F., Zhang, G. Z., Gao, Y. & Buckner, I. S. (2003). Acta Cryst. E59, o699–o700.
  7. Miller, D. B. & Spence, J. D. (1998). Clin. Pharmacokinet.34, 155–162. [DOI] [PubMed]
  8. Rath, N. P., Haq, W. & Balendiran, G. K. (2005). Acta Cryst. C61, o81–o84. [DOI] [PubMed]
  9. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  10. Sheldrick, G. M. (2003). SADABS Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  11. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  12. Thorp, J. M. (1962). Lancet, 1, 1323–1326. [DOI] [PubMed]
  13. Thorp, J. M. & Waring, W. S. (1962). Nature (London), 194, 948–949. [DOI] [PubMed]
  14. Westrip, S. P. (2007). publCIF. In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062678/ln2010sup1.cif

e-64-00o91-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062678/ln2010Isup2.hkl

e-64-00o91-Isup2.hkl (100.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES