Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o98. doi: 10.1107/S160053680705711X

7,11,15,28-Tetra­methyl-1,21,23,25-tetra­kis(2-phenyl­ethyl)resorcin[4]arene ethyl acetate clathrate

Michael G Mc Kay a, Holger B Friedrich a, Glenn E M Maguire a,*
PMCID: PMC2915052  PMID: 21200974

Abstract

The title compound, C68H64O8·C4H8O2, is a new resorcin­[4]arene cavitand synthetic precursor, obtained by alkyl­ation of a previously reported resorcin[4]arene. The additional alkyl bridges significantly rigidify the structure and enforce a ‘bowl’ shape on the mol­ecular cavity. In the crystal structure, the mol­ecule lies on a crystallographic mirror plane, and a single ethyl acetate mol­ecule (also lying on the mirror plane) is present within the compound cavity, illustrating the host capabilities of the mol­ecule.

Related literature

For related literature, see: Cram et al. (1988); Eisler et al. (2002); Friedrich et al. (2007); Piepers & Kellog (1978); Roman et al. (1999); Sebo et al. (2000).graphic file with name e-64-00o98-scheme1.jpg

Experimental

Crystal data

  • C68H64O8·C4H8O2

  • M r = 1097.30

  • Orthorhombic, Inline graphic

  • a = 24.3288 (4) Å

  • b = 20.6279 (4) Å

  • c = 11.7828 (2) Å

  • V = 5913.22 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 (2) K

  • 0.39 × 0.27 × 0.19 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: none

  • 49448 measured reflections

  • 5981 independent reflections

  • 3934 reflections with I > 2σ(I)

  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.209

  • S = 1.04

  • 5981 reflections

  • 455 parameters

  • 131 restraints

  • H-atom parameters constrained

  • Δρmax = 1.16 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-NT (Bruker, 2005); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680705711X/bi2251sup1.cif

e-64-00o98-sup1.cif (33.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680705711X/bi2251Isup2.hkl

e-64-00o98-Isup2.hkl (287KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The financial support of the DST–NRF Centre of Excellence in Catalysis, c*change, is duly acknowledged. Our thanks go to Dr Manuel Fernandes at the University of the Wit­watersrand for performing the data acquisition and structure solution.

supplementary crystallographic information

Comment

The title compound is obtained by alkylation of the hydroxyl groups of a resorcin[4]arene octol material whose structure has been previously reported (Friedrich et al., 2007). The alkylating agent, CH2BrCl, results in the formation of four OCH2O ether bridges between the four aromatic units of the resorcin[4]arene starting material (Fig. 1). The bridges rigidify the molecular structure, fixing the compound in a "bowl" shape (Fig. 2) with an enforced cavity that can accommodate guest molecules.

The 2-phenylethyl "feet" of the compound are orientated such that the aromatic rings are arranged in an edge-to-face manner. Such C—H···π interactions have also been observed in the resorcin[4]arene octol precursor (Friedrich et al., 2007). Interestingly, only two of the feet orientate in such a manner (Fig. 3). The presence of the ethyl acetate molecule within the molecular cavity forces the remaining two aromatic units apart, disrupting complete C—H···π interaction comparable to that as seen for the precursor. Similar disruption has also been reported previously for related structures.

Experimental

The synthesis of the resorcin[4]arene octol precursor can proceed via two different synthetic approaches. The older protocol as set out by Cram et al. (1988) involves heating a solution of the resorcin[4]arene starting material and the CH2BrCl in the presence of K2CO3 at atmospheric pressure. Reaction proceeds over a number of days, often accompanied by addition of further equivalents of the alkylating reagent. However, since CH2BrCl is volatile and boils at 341 K, the reaction temperature is limited to a range between 333 and 343 K. This results in yields of 40–60%. More recently, Roman et al. (1999) reported a procedure which made use of a sealed tube as a reaction vessel, heated to 361 K. The reagents are heated in the presence of Cs2CO3, which is used instead of K2CO3 due to the templating ability of the caesium cation, which aids in the formation of macrocyclic assemblies such as cavitands (Piepers & Kellog, 1978). Under these conditions, yields are in excess of 80%; indeed, the use of the protocol of Kaifer et al. in the synthesis of the resorcin[4]arene octol precursor gave a yield of 92%.

To prepare the title compound (Scheme 2): dry resorcin[4]arene octol (1.00 g, 1.66 mmol) and Cs2CO3 (3.00 g, 9.21 mmol) were added with stirring to dry DMSO (10 ml) in a pressure tube (ACE pressure tube, Aldrich). To the resulting pink solution, CH2BrCl (3.00 ml, 46.0 mmol) was added followed by further DMSO (10 ml). The tube was sealed and heated at 360 K for 16 h. After cooling to room temperature, the tube contents were poured into 2% HCl (200 ml) and the voluminous solid formed was filtered and washed with water. The cream coloured solid was chromatographed on silica gel using a mobile phase of 70:30 hexane-ethyl acetate (Rf = 0.59). The fractions collected were concentrated on a rotary evaporator to yield a cream coloured solid. The solid was stirred in methanol overnight, and filtered to yield the product as a white powder (0.97 g, 92%, m.p. 418–420 K). Crystals suitable for X-ray diffraction analysis were grown by slow liquid diffusion of methanol into a solution of the title compound in 1:1 ethyl acetate:hexane.

Refinement

H atoms were visible in difference Fourier maps but were positioned geometrically and allowed to ride on their respective parent atoms, with C—H bond lengths of 1.00 (CH), 0.99 (CH2), or 0.98 (CH3) Å. They were then refined with a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(CH3). One of the phenylethyl 'feet' was found to be disordered and was refined over two positions using isotropic displacement parameters and with SADI, SIMU, DELU, DFIX and SADI restraints applied. The refined site occupancy factors for the two positions are 0.461 (5) and 0.539 (5), respectively.

Figures

Fig. 1.

Fig. 1.

A view of one quarter of the cyclic tetramer. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii. Dashed bonds indicate links to the neighbouring units.

Fig. 2.

Fig. 2.

The molecular structure with displacement ellipsoids drawn at the 50% probability level. H atoms are omitted. The "bowl" shape of the molecule is evident, with the ethyl acetate molecule present as a guest in the molecular cavity.

Fig. 3.

Fig. 3.

The relative orientation of the feet in neighbouring resorcin[4]arene units. Displacement ellipsoids are drawn at the 10% probability level. The inclusion of the ethyl acetate solvent molecule between aromatic groups is shown. H atoms are omitted.

Fig. 4.

Fig. 4.

The formation of the title compound.

Crystal data

C68H64O8·C4H8O2 Dx = 1.233 Mg m3Dm = 1.233 Mg m3Dm measured by ?
Mr = 1097.30 Melting point: 419 K
Orthorhombic, Pnma Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2n Cell parameters from 8201 reflections
a = 24.3288 (4) Å θ = 2.2–27.7º
b = 20.6279 (4) Å µ = 0.08 mm1
c = 11.7828 (2) Å T = 173 (2) K
V = 5913.22 (18) Å3 Block, colourless
Z = 4 0.39 × 0.27 × 0.19 mm
F000 = 2336

Data collection

Bruker APEXII CCD diffractometer 3934 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.062
Monochromator: graphite θmax = 26.0º
T = 173(2) K θmin = 1.7º
phi and ω scans h = −29→30
Absorption correction: none k = −25→25
49448 measured reflections l = −14→14
5981 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063 H-atom parameters constrained
wR(F2) = 0.209   w = 1/[σ2(Fo2) + (0.132P)2 + 1.0228P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
5981 reflections Δρmax = 1.16 e Å3
455 parameters Δρmin = −0.55 e Å3
131 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.21767 (10) 0.05927 (12) −0.0930 (2) 0.0315 (6)
C2 0.20814 (10) 0.07645 (12) 0.0196 (2) 0.0303 (5)
C3 0.16055 (10) 0.10805 (11) 0.05431 (19) 0.0281 (5)
C4 0.12187 (10) 0.12419 (11) −0.02821 (19) 0.0282 (5)
H4 0.0899 0.1475 −0.0064 0.034*
C5 0.12871 (10) 0.10715 (12) −0.1421 (2) 0.0296 (5)
C6 0.17667 (10) 0.07484 (12) −0.1710 (2) 0.0325 (6)
C7 0.26893 (11) 0.02447 (15) −0.1284 (2) 0.0429 (7)
H7A 0.2680 0.0168 −0.2104 0.064* 0.50
H7B 0.2712 −0.0171 −0.0885 0.064* 0.50
H7C 0.3011 0.0510 −0.1094 0.064* 0.50
H7D 0.2922 0.0170 −0.0617 0.064* 0.50
H7E 0.2890 0.0509 −0.1837 0.064* 0.50
H7F 0.2591 −0.0172 −0.1628 0.064* 0.50
C8 0.20493 (11) 0.09993 (15) −0.3597 (2) 0.0408 (7)
H8A 0.2284 0.0775 −0.4161 0.049*
H8B 0.2283 0.1311 −0.3179 0.049*
C9 0.08732 (10) 0.12684 (12) −0.2322 (2) 0.0317 (6)
H9 0.0892 0.0936 −0.2938 0.038*
C10 0.16631 (14) 0.2500 −0.4127 (3) 0.0384 (9)
C11 0.14567 (10) 0.19219 (14) −0.36868 (19) 0.0341 (6)
C12 0.10640 (9) 0.19097 (13) −0.28304 (19) 0.0312 (6)
C13 0.08815 (13) 0.2500 −0.2412 (3) 0.0286 (7)
H13 0.0620 0.2500 −0.1812 0.034*
C14 0.20920 (17) 0.2500 −0.5051 (3) 0.0487 (11)
H14A 0.2431 0.2699 −0.4765 0.073* 0.50
H14B 0.1957 0.2748 −0.5703 0.073* 0.50
H14C 0.2168 0.2053 −0.5285 0.073* 0.50
C15 0.26710 (13) 0.2500 0.2326 (3) 0.0304 (8)
C16 0.23792 (9) 0.19246 (12) 0.22008 (18) 0.0279 (5)
C17 0.18192 (9) 0.19104 (11) 0.19712 (18) 0.0260 (5)
C18 0.15503 (13) 0.2500 0.1853 (3) 0.0266 (7)
H18 0.1168 0.2500 0.1684 0.032*
C19 0.32741 (15) 0.2500 0.2608 (3) 0.0411 (9)
H19A 0.3402 0.2052 0.2698 0.062* 0.50
H19B 0.3334 0.2738 0.3318 0.062* 0.50
H19C 0.3479 0.2710 0.1994 0.062* 0.50
C20 0.28457 (10) 0.10094 (13) 0.1404 (2) 0.0343 (6)
H20A 0.2923 0.1328 0.0797 0.041*
H20B 0.3194 0.0783 0.1584 0.041*
C21 0.15301 (9) 0.12615 (12) 0.17830 (19) 0.0278 (5)
H21 0.1734 0.0931 0.2239 0.033*
C22 0.02798 (10) 0.12884 (12) −0.1903 (2) 0.0352 (6)
H22A 0.0254 0.1599 −0.1264 0.042*
H22B 0.0043 0.1452 −0.2523 0.042*
C23 0.00637 (11) 0.06397 (14) −0.1517 (3) 0.0493 (8)
H23A 0.0018 0.0354 −0.2185 0.059*
H23B 0.0336 0.0436 −0.1005 0.059*
C24 −0.04747 (11) 0.06929 (13) −0.0909 (3) 0.0411 (7)
C25 −0.04889 (13) 0.08805 (16) 0.0217 (3) 0.0550 (8)
H25 −0.0153 0.0962 0.0603 0.066*
C26 −0.09799 (15) 0.09521 (18) 0.0792 (3) 0.0638 (9)
H26 −0.0979 0.1084 0.1565 0.077*
C27 −0.14716 (14) 0.08316 (18) 0.0247 (3) 0.0644 (9)
H27 −0.1811 0.0880 0.0638 0.077*
C28 −0.14632 (13) 0.06401 (17) −0.0874 (4) 0.0638 (10)
H28 −0.1799 0.0552 −0.1256 0.077*
C29 −0.09712 (12) 0.05752 (14) −0.1446 (3) 0.0496 (7)
H29 −0.0973 0.0448 −0.2221 0.060*
C30 0.09333 (10) 0.12443 (13) 0.21862 (19) 0.0315 (6)
H30A 0.0728 0.1603 0.1824 0.038*
H30B 0.0763 0.0831 0.1942 0.038*
C31 0.0885 (2) 0.1305 (6) 0.3468 (3) 0.046 (3) 0.461 (5)
H31A 0.1150 0.1004 0.3826 0.055* 0.461 (5)
H31B 0.0989 0.1751 0.3692 0.055* 0.461 (5)
C32 0.0316 (5) 0.1161 (4) 0.393 (2) 0.048 (2) 0.461 (5)
C33 −0.0079 (3) 0.1621 (4) 0.3928 (8) 0.077 (2) 0.461 (5)
H33 0.0007 0.2041 0.3648 0.092* 0.461 (5)
C34 −0.0606 (3) 0.1497 (5) 0.4325 (10) 0.093 (3) 0.461 (5)
H34 −0.0881 0.1823 0.4277 0.112* 0.461 (5)
C35 −0.0726 (4) 0.0909 (6) 0.4783 (12) 0.093 (3) 0.461 (5)
H35 −0.1069 0.0837 0.5144 0.112* 0.461 (5)
C36 −0.0355 (3) 0.0434 (4) 0.4718 (9) 0.096 (3) 0.461 (5)
H36 −0.0452 0.0009 0.4959 0.115* 0.461 (5)
C37 0.0170 (3) 0.0552 (4) 0.4304 (8) 0.077 (2) 0.461 (5)
H37 0.0431 0.0210 0.4280 0.092* 0.461 (5)
C31A 0.0893 (2) 0.1308 (5) 0.3470 (3) 0.049 (3) 0.539 (5)
H31C 0.1101 0.0949 0.3823 0.058* 0.539 (5)
H31D 0.1071 0.1719 0.3701 0.058* 0.539 (5)
C32A 0.0310 (4) 0.1300 (4) 0.3930 (18) 0.049 (2) 0.539 (5)
C33A 0.0156 (2) 0.1708 (4) 0.4765 (5) 0.0705 (18) 0.539 (5)
H33A 0.0416 0.2008 0.5057 0.085* 0.539 (5)
C34A −0.0371 (3) 0.1703 (4) 0.5210 (6) 0.088 (2) 0.539 (5)
H34A −0.0471 0.2007 0.5781 0.105* 0.539 (5)
C35A −0.0746 (3) 0.1265 (6) 0.4831 (9) 0.081 (2) 0.539 (5)
H35A −0.1099 0.1236 0.5172 0.097* 0.539 (5)
C36A −0.0609 (2) 0.0877 (5) 0.3972 (7) 0.088 (2) 0.539 (5)
H36A −0.0874 0.0582 0.3680 0.105* 0.539 (5)
C37A −0.0088 (2) 0.0896 (4) 0.3497 (6) 0.076 (2) 0.539 (5)
H37A −0.0004 0.0626 0.2866 0.091* 0.539 (5)
C38 0.2894 (2) 0.2500 −0.1267 (4) 0.0743 (16)
C39 0.22971 (16) 0.2500 −0.1041 (3) 0.0427 (9)
H39A 0.2233 0.2500 −0.0220 0.064*
H39B 0.2131 0.2112 −0.1378 0.064*
C40 0.3641 (3) 0.2500 −0.2541 (6) 0.159 (5)
H40 0.3816 0.2111 −0.2208 0.190*
C41 0.3703 (4) 0.2500 −0.3809 (6) 0.131 (3)
H41A 0.4096 0.2500 −0.3991 0.197*
H41B 0.3531 0.2112 −0.4132 0.197*
O1 0.18418 (7) 0.05391 (9) −0.28283 (14) 0.0395 (5)
O2 0.16347 (7) 0.13445 (10) −0.41755 (14) 0.0413 (5)
O3 0.26603 (7) 0.13439 (8) 0.23871 (14) 0.0326 (4)
O4 0.24595 (7) 0.05531 (8) 0.10003 (14) 0.0337 (4)
O5 0.30466 (17) 0.2500 −0.2313 (3) 0.1016 (15)
O6 0.3238 (2) 0.2500 −0.0520 (5) 0.223 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0301 (13) 0.0327 (13) 0.0318 (13) 0.0041 (10) 0.0041 (10) −0.0017 (10)
C2 0.0305 (12) 0.0308 (12) 0.0296 (12) 0.0014 (10) −0.0035 (10) 0.0013 (10)
C3 0.0303 (12) 0.0295 (12) 0.0245 (12) −0.0034 (10) 0.0016 (10) −0.0013 (10)
C4 0.0278 (12) 0.0301 (12) 0.0267 (12) −0.0002 (10) 0.0031 (10) −0.0021 (10)
C5 0.0297 (13) 0.0323 (13) 0.0269 (12) −0.0018 (10) −0.0012 (10) −0.0050 (10)
C6 0.0368 (14) 0.0347 (13) 0.0260 (12) 0.0013 (11) 0.0017 (10) −0.0081 (10)
C7 0.0418 (15) 0.0517 (17) 0.0351 (14) 0.0139 (13) 0.0023 (12) −0.0069 (13)
C8 0.0334 (14) 0.0619 (19) 0.0272 (13) 0.0097 (12) 0.0024 (11) −0.0095 (13)
C9 0.0267 (12) 0.0423 (14) 0.0260 (12) −0.0013 (10) −0.0026 (10) −0.0098 (10)
C10 0.0302 (19) 0.071 (3) 0.0140 (15) 0.000 −0.0018 (14) 0.000
C11 0.0295 (13) 0.0571 (17) 0.0155 (11) 0.0039 (11) −0.0042 (9) −0.0055 (11)
C12 0.0247 (12) 0.0508 (16) 0.0180 (11) 0.0003 (10) −0.0069 (9) −0.0043 (10)
C13 0.0234 (16) 0.043 (2) 0.0195 (15) 0.000 −0.0005 (13) 0.000
C14 0.043 (2) 0.079 (3) 0.0242 (18) 0.000 0.0088 (17) 0.000
C15 0.0264 (17) 0.046 (2) 0.0186 (16) 0.000 0.0009 (13) 0.000
C16 0.0303 (12) 0.0368 (13) 0.0165 (11) 0.0041 (10) −0.0006 (9) 0.0011 (9)
C17 0.0282 (12) 0.0357 (13) 0.0141 (10) −0.0017 (10) 0.0019 (9) 0.0006 (9)
C18 0.0245 (16) 0.0385 (19) 0.0167 (15) 0.000 0.0016 (12) 0.000
C19 0.0290 (19) 0.053 (2) 0.041 (2) 0.000 −0.0064 (16) 0.000
C20 0.0271 (12) 0.0414 (15) 0.0346 (13) 0.0056 (11) −0.0004 (10) 0.0007 (11)
C21 0.0288 (12) 0.0323 (13) 0.0223 (11) 0.0006 (10) 0.0015 (9) 0.0031 (10)
C22 0.0292 (13) 0.0400 (14) 0.0363 (14) −0.0018 (11) −0.0026 (11) −0.0073 (11)
C23 0.0362 (15) 0.0434 (17) 0.068 (2) −0.0046 (12) 0.0020 (14) −0.0102 (15)
C24 0.0340 (14) 0.0331 (14) 0.0563 (18) −0.0047 (11) −0.0008 (13) 0.0004 (13)
C25 0.0474 (18) 0.060 (2) 0.058 (2) −0.0049 (15) −0.0041 (15) 0.0011 (16)
C26 0.067 (2) 0.069 (2) 0.056 (2) −0.0032 (18) 0.0135 (18) 0.0028 (17)
C27 0.0484 (19) 0.064 (2) 0.081 (3) −0.0070 (16) 0.0186 (18) 0.0097 (19)
C28 0.0338 (16) 0.068 (2) 0.090 (3) −0.0104 (15) −0.0009 (17) 0.000 (2)
C29 0.0420 (16) 0.0476 (17) 0.0592 (19) −0.0079 (13) −0.0026 (14) −0.0054 (14)
C30 0.0292 (13) 0.0404 (14) 0.0249 (12) −0.0038 (11) 0.0008 (10) 0.0008 (10)
C31 0.033 (4) 0.085 (8) 0.020 (7) −0.019 (4) −0.001 (4) −0.015 (6)
C32 0.034 (3) 0.081 (4) 0.031 (4) −0.010 (3) 0.005 (3) 0.003 (5)
C33 0.056 (4) 0.097 (4) 0.079 (5) 0.010 (3) 0.024 (4) 0.021 (4)
C34 0.048 (4) 0.133 (6) 0.098 (6) 0.019 (4) 0.020 (4) 0.027 (5)
C35 0.053 (4) 0.148 (6) 0.079 (6) −0.011 (4) 0.019 (4) 0.029 (6)
C36 0.067 (4) 0.117 (5) 0.102 (6) −0.023 (3) 0.023 (4) 0.044 (5)
C37 0.060 (4) 0.091 (4) 0.079 (5) −0.007 (3) 0.022 (4) 0.028 (4)
C31A 0.038 (4) 0.075 (7) 0.033 (7) 0.000 (4) 0.008 (4) 0.010 (5)
C32A 0.033 (3) 0.082 (4) 0.030 (4) −0.002 (3) 0.003 (3) 0.006 (4)
C33A 0.041 (3) 0.129 (5) 0.042 (3) 0.010 (3) −0.001 (2) −0.019 (3)
C34A 0.048 (3) 0.163 (6) 0.053 (4) 0.017 (3) 0.008 (3) −0.021 (4)
C35A 0.036 (3) 0.150 (6) 0.058 (4) 0.010 (3) 0.011 (3) 0.013 (4)
C36A 0.038 (3) 0.130 (6) 0.095 (5) −0.014 (3) 0.010 (3) −0.008 (4)
C37A 0.048 (3) 0.097 (5) 0.083 (4) −0.017 (3) 0.019 (3) −0.018 (3)
C38 0.059 (3) 0.119 (5) 0.046 (3) 0.000 −0.006 (2) 0.000
C39 0.047 (2) 0.046 (2) 0.035 (2) 0.000 −0.0041 (17) 0.000
C40 0.076 (5) 0.308 (15) 0.092 (6) 0.000 0.006 (4) 0.000
C41 0.134 (7) 0.119 (7) 0.140 (8) 0.000 0.055 (6) 0.000
O1 0.0422 (11) 0.0478 (11) 0.0286 (9) 0.0067 (8) 0.0018 (8) −0.0136 (8)
O2 0.0390 (10) 0.0638 (13) 0.0210 (8) 0.0101 (9) −0.0026 (7) −0.0125 (8)
O3 0.0328 (9) 0.0400 (10) 0.0249 (8) 0.0070 (7) −0.0022 (7) 0.0038 (7)
O4 0.0351 (9) 0.0342 (9) 0.0317 (9) 0.0057 (7) −0.0045 (7) 0.0020 (7)
O5 0.065 (2) 0.173 (5) 0.067 (3) 0.000 0.004 (2) 0.000
O6 0.074 (3) 0.515 (16) 0.081 (4) 0.000 −0.010 (3) 0.000

Geometric parameters (Å, °)

C1—C2 1.392 (3) C23—C24 1.497 (4)
C1—C6 1.394 (3) C23—H23A 0.990
C1—C7 1.498 (3) C23—H23B 0.990
C2—C3 1.390 (3) C24—C25 1.382 (4)
C2—O4 1.391 (3) C24—C29 1.385 (4)
C3—C4 1.394 (3) C25—C26 1.382 (4)
C3—C21 1.519 (3) C25—H25 0.950
C4—C5 1.397 (3) C26—C27 1.380 (5)
C4—H4 0.950 C26—H26 0.950
C5—C6 1.387 (3) C27—C28 1.379 (5)
C5—C9 1.519 (3) C27—H27 0.950
C6—O1 1.398 (3) C28—C29 1.380 (4)
C7—H7A 0.980 C28—H28 0.950
C7—H7B 0.980 C29—H29 0.950
C7—H7C 0.980 C30—C31 1.521 (4)
C7—H7D 0.980 C30—C31A 1.522 (4)
C7—H7E 0.980 C30—H30A 0.990
C7—H7F 0.980 C30—H30B 0.990
C8—O1 1.406 (3) C31—C32 1.517 (5)
C8—O2 1.410 (3) C31—H31A 0.990
C8—H8A 0.990 C31—H31B 0.990
C8—H8B 0.990 C32—C33 1.349 (13)
C9—C12 1.525 (4) C32—C37 1.378 (13)
C9—C22 1.526 (3) C33—C34 1.388 (7)
C9—H9 1.000 C33—H33 0.950
C10—C11 1.394 (3) C34—C35 1.360 (12)
C10—C11i 1.394 (3) C34—H34 0.950
C10—C14 1.508 (5) C35—C36 1.334 (12)
C11—C12 1.390 (3) C35—H35 0.950
C11—O2 1.392 (3) C36—C37 1.389 (7)
C12—C13 1.387 (3) C36—H36 0.950
C13—C12i 1.387 (3) C37—H37 0.950
C13—H13 0.950 C31A—C32A 1.517 (5)
C14—H14A 0.980 C31A—H31C 0.990
C14—H14B 0.980 C31A—H31D 0.990
C14—H14C 0.980 C32A—C33A 1.350 (13)
C15—C16 1.391 (3) C32A—C37A 1.375 (13)
C15—C16i 1.391 (3) C33A—C34A 1.384 (7)
C15—C19 1.505 (5) C33A—H33A 0.950
C16—C17 1.389 (3) C34A—C35A 1.360 (12)
C16—O3 1.397 (3) C34A—H34A 0.950
C17—C18 1.388 (3) C35A—C36A 1.332 (12)
C17—C21 1.528 (3) C35A—H35A 0.950
C18—C17i 1.388 (3) C36A—C37A 1.388 (7)
C18—H18 0.950 C36A—H36A 0.950
C19—H19A 0.980 C37A—H37A 0.950
C19—H19B 0.980 C38—O6 1.213 (7)
C19—H19C 0.980 C38—O5 1.286 (6)
C20—O4 1.412 (3) C38—C39 1.477 (6)
C20—O3 1.422 (3) C39—H39A 0.980
C20—H20A 0.990 C39—H39B 0.980
C20—H20B 0.990 C40—O5 1.470 (8)
C21—C30 1.528 (3) C40—C41 1.503 (5)
C21—H21 1.000 C40—H40 0.990
C22—C23 1.508 (4) C41—H41A 0.980
C22—H22A 0.990 C41—H41B 0.980
C22—H22B 0.990
C2—C1—C6 116.8 (2) C23—C22—H22B 108.8
C2—C1—C7 121.7 (2) C9—C22—H22B 108.8
C6—C1—C7 121.5 (2) H22A—C22—H22B 107.7
C3—C2—O4 119.8 (2) C24—C23—C22 112.6 (2)
C3—C2—C1 122.6 (2) C24—C23—H23A 109.1
O4—C2—C1 117.3 (2) C22—C23—H23A 109.1
C2—C3—C4 118.0 (2) C24—C23—H23B 109.1
C2—C3—C21 119.9 (2) C22—C23—H23B 109.1
C4—C3—C21 122.1 (2) H23A—C23—H23B 107.8
C3—C4—C5 122.0 (2) C25—C24—C29 117.8 (3)
C3—C4—H4 119.0 C25—C24—C23 120.1 (3)
C5—C4—H4 119.0 C29—C24—C23 122.1 (3)
C6—C5—C4 117.2 (2) C26—C25—C24 121.5 (3)
C6—C5—C9 121.0 (2) C26—C25—H25 119.2
C4—C5—C9 121.7 (2) C24—C25—H25 119.2
C5—C6—C1 123.4 (2) C27—C26—C25 120.1 (3)
C5—C6—O1 119.4 (2) C27—C26—H26 119.9
C1—C6—O1 117.2 (2) C25—C26—H26 119.9
C1—C7—H7A 109.5 C28—C27—C26 119.0 (3)
C1—C7—H7B 109.5 C28—C27—H27 120.5
H7A—C7—H7B 109.5 C26—C27—H27 120.5
C1—C7—H7C 109.5 C27—C28—C29 120.6 (3)
H7A—C7—H7C 109.5 C27—C28—H28 119.7
H7B—C7—H7C 109.5 C29—C28—H28 119.7
C1—C7—H7D 109.5 C28—C29—C24 121.1 (3)
H7A—C7—H7D 141.1 C28—C29—H29 119.5
H7B—C7—H7D 56.3 C24—C29—H29 119.5
H7C—C7—H7D 56.3 C31—C30—C21 112.4 (3)
C1—C7—H7E 109.5 C31A—C30—C21 111.6 (3)
H7A—C7—H7E 56.3 C31—C30—H30A 109.1
H7B—C7—H7E 141.1 C31A—C30—H30A 109.3
H7C—C7—H7E 56.3 C21—C30—H30A 109.1
H7D—C7—H7E 109.5 C31—C30—H30B 109.1
C1—C7—H7F 109.5 C31A—C30—H30B 109.7
H7A—C7—H7F 56.3 C21—C30—H30B 109.1
H7B—C7—H7F 56.3 H30A—C30—H30B 107.9
H7C—C7—H7F 141.1 C32—C31—C30 114.2 (10)
H7D—C7—H7F 109.5 C32—C31—H31A 108.7
H7E—C7—H7F 109.5 C30—C31—H31A 108.7
O1—C8—O2 113.3 (2) C32—C31—H31B 108.7
O1—C8—H8A 108.9 C30—C31—H31B 108.7
O2—C8—H8A 108.9 H31A—C31—H31B 107.6
O1—C8—H8B 108.9 C33—C32—C37 117.3 (5)
O2—C8—H8B 108.9 C33—C32—C31 120.8 (10)
H8A—C8—H8B 107.7 C37—C32—C31 121.8 (9)
C5—C9—C12 107.77 (19) C32—C33—C34 121.8 (7)
C5—C9—C22 114.1 (2) C32—C33—H33 119.1
C12—C9—C22 113.1 (2) C34—C33—H33 119.1
C5—C9—H9 107.2 C35—C34—C33 119.7 (7)
C12—C9—H9 107.2 C35—C34—H34 120.2
C22—C9—H9 107.2 C33—C34—H34 120.2
C11—C10—C11i 117.6 (3) C36—C35—C34 119.2 (6)
C11—C10—C14 121.18 (15) C36—C35—H35 120.4
C11i—C10—C14 121.18 (15) C34—C35—H35 120.4
C12—C11—O2 119.9 (2) C35—C36—C37 120.8 (7)
C12—C11—C10 122.2 (2) C35—C36—H36 119.6
O2—C11—C10 117.8 (2) C37—C36—H36 119.6
C13—C12—C11 117.6 (2) C32—C37—C36 120.6 (7)
C13—C12—C9 121.6 (2) C32—C37—H37 119.7
C11—C12—C9 120.7 (2) C36—C37—H37 119.7
C12i—C13—C12 122.8 (3) C32A—C31A—C30 114.5 (9)
C12i—C13—H13 118.6 C32A—C31A—H31C 108.6
C12—C13—H13 118.6 C30—C31A—H31C 108.6
C10—C14—H14A 109.5 C32A—C31A—H31D 108.6
C10—C14—H14B 109.5 C30—C31A—H31D 108.6
H14A—C14—H14B 109.5 H31C—C31A—H31D 107.6
C10—C14—H14C 109.5 C33A—C32A—C37A 116.9 (5)
H14A—C14—H14C 109.5 C33A—C32A—C31A 120.9 (9)
H14B—C14—H14C 109.5 C37A—C32A—C31A 122.2 (9)
C16—C15—C16i 117.2 (3) C32A—C33A—C34A 122.0 (7)
C16—C15—C19 121.41 (15) C32A—C33A—H33A 119.0
C16i—C15—C19 121.41 (15) C34A—C33A—H33A 119.0
C17—C16—C15 122.6 (2) C35A—C34A—C33A 120.1 (7)
C17—C16—O3 119.5 (2) C35A—C34A—H34A 119.9
C15—C16—O3 117.7 (2) C33A—C34A—H34A 119.9
C18—C17—C16 117.6 (2) C36A—C35A—C34A 118.8 (5)
C18—C17—C21 122.4 (2) C36A—C35A—H35A 120.6
C16—C17—C21 119.9 (2) C34A—C35A—H35A 120.6
C17i—C18—C17 122.4 (3) C35A—C36A—C37A 121.2 (7)
C17i—C18—H18 118.8 C35A—C36A—H36A 119.4
C17—C18—H18 118.8 C37A—C36A—H36A 119.4
C15—C19—H19A 109.5 C32A—C37A—C36A 120.7 (7)
C15—C19—H19B 109.5 C32A—C37A—H37A 119.6
H19A—C19—H19B 109.5 C36A—C37A—H37A 119.6
C15—C19—H19C 109.5 O6—C38—O5 119.8 (5)
H19A—C19—H19C 109.5 O6—C38—C39 123.1 (5)
H19B—C19—H19C 109.5 O5—C38—C39 117.1 (4)
O4—C20—O3 112.75 (19) C38—C39—H39A 109.5
O4—C20—H20A 109.0 C38—C39—H39B 109.4
O3—C20—H20A 109.0 H39A—C39—H39B 109.5
O4—C20—H20B 109.0 O5—C40—C41 106.3 (6)
O3—C20—H20B 109.0 O5—C40—H40 110.6
H20A—C20—H20B 107.8 C41—C40—H40 110.5
C3—C21—C30 114.09 (19) C40—C41—H41A 108.4
C3—C21—C17 107.41 (18) C40—C41—H41B 110.0
C30—C21—C17 114.4 (2) H41A—C41—H41B 109.5
C3—C21—H21 106.8 C6—O1—C8 116.5 (2)
C30—C21—H21 106.8 C11—O2—C8 117.04 (19)
C17—C21—H21 106.8 C16—O3—C20 116.33 (17)
C23—C22—C9 113.8 (2) C2—O4—C20 117.43 (18)
C23—C22—H22A 108.8 C38—O5—C40 117.2 (5)
C9—C22—H22A 108.8
C6—C1—C2—C3 −0.5 (4) C5—C9—C22—C23 −62.8 (3)
C7—C1—C2—C3 −179.2 (2) C12—C9—C22—C23 173.6 (2)
C6—C1—C2—O4 173.5 (2) C9—C22—C23—C24 169.1 (2)
C7—C1—C2—O4 −5.2 (4) C22—C23—C24—C25 −79.7 (4)
O4—C2—C3—C4 −175.4 (2) C22—C23—C24—C29 98.6 (3)
C1—C2—C3—C4 −1.6 (4) C29—C24—C25—C26 −0.3 (5)
O4—C2—C3—C21 6.9 (3) C23—C24—C25—C26 178.1 (3)
C1—C2—C3—C21 −179.3 (2) C24—C25—C26—C27 0.4 (5)
C2—C3—C4—C5 2.7 (3) C25—C26—C27—C28 0.0 (5)
C21—C3—C4—C5 −179.6 (2) C26—C27—C28—C29 −0.6 (5)
C3—C4—C5—C6 −1.8 (4) C27—C28—C29—C24 0.7 (5)
C3—C4—C5—C9 −177.9 (2) C25—C24—C29—C28 −0.3 (4)
C4—C5—C6—C1 −0.4 (4) C23—C24—C29—C28 −178.7 (3)
C9—C5—C6—C1 175.8 (2) C3—C21—C30—C31 169.4 (5)
C4—C5—C6—O1 176.8 (2) C17—C21—C30—C31 −66.4 (6)
C9—C5—C6—O1 −7.0 (4) C3—C21—C30—C31A 169.6 (5)
C2—C1—C6—C5 1.5 (4) C17—C21—C30—C31A −66.1 (5)
C7—C1—C6—C5 −179.8 (2) C31A—C30—C31—C32 176 (100)
C2—C1—C6—O1 −175.8 (2) C21—C30—C31—C32 −168.8 (7)
C7—C1—C6—O1 2.9 (4) C30—C31—C32—C33 −82.8 (17)
C6—C5—C9—C12 −83.5 (3) C30—C31—C32—C37 93 (2)
C4—C5—C9—C12 92.5 (3) C37—C32—C33—C34 2(3)
C6—C5—C9—C22 150.1 (2) C31—C32—C33—C34 178.7 (13)
C4—C5—C9—C22 −33.9 (3) C32—C33—C34—C35 3(2)
C11i—C10—C11—C12 −0.8 (5) C33—C34—C35—C36 −8(2)
C14—C10—C11—C12 179.6 (3) C34—C35—C36—C37 7(2)
C11i—C10—C11—O2 175.83 (17) C33—C32—C37—C36 −3(3)
C14—C10—C11—O2 −3.8 (4) C31—C32—C37—C36 −179.8 (13)
O2—C11—C12—C13 −176.9 (2) C35—C36—C37—C32 −1(2)
C10—C11—C12—C13 −0.4 (4) C31—C30—C31A—C32A −15 (67)
O2—C11—C12—C9 7.2 (3) C21—C30—C31A—C32A 179.6 (6)
C10—C11—C12—C9 −176.3 (2) C30—C31A—C32A—C33A −138.5 (14)
C5—C9—C12—C13 −92.7 (3) C30—C31A—C32A—C37A 39.3 (17)
C22—C9—C12—C13 34.3 (3) C37A—C32A—C33A—C34A 3(2)
C5—C9—C12—C11 83.1 (3) C31A—C32A—C33A—C34A −179.1 (10)
C22—C9—C12—C11 −149.9 (2) C32A—C33A—C34A—C35A 2.0 (16)
C11—C12—C13—C12i 1.6 (5) C33A—C34A—C35A—C36A −4.9 (15)
C9—C12—C13—C12i 177.53 (19) C34A—C35A—C36A—C37A 2.7 (17)
C16i—C15—C16—C17 −0.6 (4) C33A—C32A—C37A—C36A −5(2)
C19—C15—C16—C17 178.2 (3) C31A—C32A—C37A—C36A 176.9 (11)
C16i—C15—C16—O3 −176.47 (16) C35A—C36A—C37A—C32A 2.5 (17)
C19—C15—C16—O3 2.2 (4) C5—C6—O1—C8 84.0 (3)
C15—C16—C17—C18 0.7 (4) C1—C6—O1—C8 −98.7 (3)
O3—C16—C17—C18 176.6 (2) O2—C8—O1—C6 −92.1 (3)
C15—C16—C17—C21 176.8 (2) C12—C11—O2—C8 −82.9 (3)
O3—C16—C17—C21 −7.3 (3) C10—C11—O2—C8 100.4 (3)
C16—C17—C18—C17i −0.9 (4) O1—C8—O2—C11 91.4 (3)
C21—C17—C18—C17i −176.90 (17) C17—C16—O3—C20 84.4 (3)
C2—C3—C21—C30 −147.6 (2) C15—C16—O3—C20 −99.6 (3)
C4—C3—C21—C30 34.7 (3) O4—C20—O3—C16 −91.5 (2)
C2—C3—C21—C17 84.5 (3) C3—C2—O4—C20 −83.6 (3)
C4—C3—C21—C17 −93.1 (3) C1—C2—O4—C20 102.3 (3)
C18—C17—C21—C3 91.1 (3) O3—C20—O4—C2 91.1 (2)
C16—C17—C21—C3 −84.8 (2) O6—C38—O5—C40 0.0
C18—C17—C21—C30 −36.6 (3) C39—C38—O5—C40 180.0
C16—C17—C21—C30 147.5 (2) C41—C40—O5—C38 180.0

Symmetry codes: (i) x, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2251).

References

  1. Bruker (1997). SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2005). APEX2 (Version 2.0-1) and SAINT-NT (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cram, D. J., Karbach, S., Kim, H.-E., Knobler, C. B., Maverick, E. F., Ericson, J. L. & Helgeson, R. C. (1988). J. Am. Chem. Soc.110, 2229–2237.
  4. Eisler, D., Hong, W., Jennings, M. C. & Pudephatt, R. J. (2002). Organometallics, 21, 3955–3960.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Friedrich, H. B., Howie, R. A., Maguire, G. E. M. & Mc Kay, M. G. (2007). Acta Cryst. E63, o4346.
  7. Piepers, O. & Kellog, R. M. (1978). J. Chem. Soc. Chem. Commun. pp. 383–384.
  8. Roman, E., Peinador, C., Mendoza, S. & Kaifer, A. E. (1999). J. Org. Chem.64, 2577–2578.
  9. Sebo, L., Diederich, F. & Gramlich, V. (2000). Helv. Chim. Acta, 83, 93–96.
  10. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680705711X/bi2251sup1.cif

e-64-00o98-sup1.cif (33.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680705711X/bi2251Isup2.hkl

e-64-00o98-Isup2.hkl (287KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES