Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o99–o100. doi: 10.1107/S1600536807059582

5′′-(4-Chloro­benzyl­idene)-1′,1′′-dimethyl-3′-phenyl­acenaphthene-1-spiro-2′-pyrrolidine-3′-spiro-3′′-pyridine-2,4′′-dione

S Pandiarajan a, S N Saravanamoorthy a, B Ravi Kumar a, R Ranjith Kumar b, S Athimoolam c,*
PMCID: PMC2915053  PMID: 21200975

Abstract

In the title compound, C34H28Cl2N2O2, the five-membered pyrrolidine ring adopts an envelope conformation and the six-membered piperidinone ring is in a distorted half-chair conformation. The mol­ecular structure shows three intra­molecular C—H⋯O inter­actions and the crystal packing is stabilized through inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For the biological importance of pyrrolidines, see: Babu & Raghunathan (2007); Boruah et al. (2007); Chande et al. (2005); Horri et al. (1986); Karthikeyan et al. (2007); Watson et al. (2001). For puckering analysis, see: Cremer & Pople (1975). For hydrogen-bonding inter­actions, see: Desiraju & Steiner (1999).graphic file with name e-64-00o99-scheme1.jpg

Experimental

Crystal data

  • C34H28Cl2N2O2

  • M r = 567.48

  • Monoclinic, Inline graphic

  • a = 8.6561 (5) Å

  • b = 13.4732 (8) Å

  • c = 24.3962 (14) Å

  • β = 95.765 (12)°

  • V = 2830.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 (2) K

  • 0.22 × 0.19 × 0.15 mm

Data collection

  • Nonius MACH3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.963, T max = 0.991

  • 5802 measured reflections

  • 4962 independent reflections

  • 3252 reflections with I > 2σ(I)

  • R int = 0.031

  • 3 standard reflections frequency: 60 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.122

  • S = 1.01

  • 4962 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS ; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL/PC (Bruker, 2000); program(s) used to refine structure: SHELXTL/PC; molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL/PC.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807059582/bt2624sup1.cif

e-64-00o99-sup1.cif (27.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807059582/bt2624Isup2.hkl

e-64-00o99-Isup2.hkl (238.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1 0.93 2.40 2.783 (3) 104
C14—H14⋯O1 0.98 2.44 2.818 (3) 102
C22—H22C⋯O2 0.96 2.56 3.101 (3) 116
C26—H26⋯O1i 0.93 2.38 3.307 (3) 176
C21—H21BCg1ii 0.97 2.73 3.559 (3) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

SA sincerely thanks the Vice-Chancellor and Management of the Kalasalingam University, Anand Nagar and Krishnan Koil, for their support and encouragement. SPR and BRK thank the Principal and Management of Devanga Arts College, Aruppukottai.

supplementary crystallographic information

Comment

1,3-Dipolar cycloadditions form a subject of intensive research in organic synthesis in view of their great synthetic potential (Karthikeyan et al., 2007). In particular, the cycloaddition of nonstabilized azomethine ylides with olefins represents one of the most convergent approaches for the construction of pyrrolidines (Boruah et al., 2007), which are prevalent in a variety of biologically active compounds (Watson et al., 2001) and find utility in the treatment of diseases such as diabetes (Horri et al., 1986). Acenaphthenequinone is a versatile precursor for azomethine ylide cycloaddition as it reacts with various α-amino acids generating reactive 1,3-dipoles (Babu & Raghunathan, 2007). Synthesis of spiro compounds have drawn considerable attention of the chemists, in view of their very good antimycobacterial activity (Chande et al., 2005).

The envelope conformation of the five-membered ring in (I), is observed through the puckering analysis [q2 = 0.446 (2) Å and φ2 = 43.2 (3)°; Cremer & Pople, 1975] and the six-membered ring adopts distorted half-chair conformation [q2 = 0.289 (3) Å, φ2 = 117.1 (6)° and q3 = -0.454 (2) Å] (Fig. 1). The dihedral angle between the chlorophenyl rings are 86.1 (1)° and these rings are making angles of 35.6 (1) and 51.7 (1)° with the acenaphthene group.

The molecular structure of the title compound shows three intramolecular hydrogen bonds (Desiraju & Steiner, 1999). The crystal packing is stabilized through intermolecular C—H···O and C—H···π interactions (Fig. 2; Table 1). Atom H21B interacts with the centroid of the ring C1–C6.

Experimental

A mixture of 1-methyl-3,5-bis[(E)-4-chlorophenylmethylidene]tetrahydro-4(1H)-pyridinone 1 mmol), acenaphthenequinone (1 mmol) and sarcosine (1 mmol) was dissolved in methanol (10 ml) and refluxed for 1 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml), the precipitated solid was filtered and washed with water (100 ml) to obtain pure 1-Methyl-4-(4-chlorophenyl)pyrrolo-(spiro[2.2'']-acenaphthene-1'')- spiro[3.3']-5'-(4-chlorophenyl-methylidene)-1'-methyltetrahydro-4'-(1H)- pyridinone as pale yellow solid.

Refinement

All the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) =1.2–1.5 Ueq (parent atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the numbering scheme for the atoms and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the molecules, viewed down the a-axis.

Crystal data

C34H28Cl2N2O2 F000 = 1184
Mr = 567.48 Dx = 1.332 Mg m3
Monoclinic, P21/c Melting point: 188 K
Hall symbol: -P 2ybc Mo Kα radiation λ = 0.71073 Å
a = 8.6561 (5) Å Cell parameters from 25 reflections
b = 13.4732 (8) Å θ = 10.5–13.6º
c = 24.3962 (14) Å µ = 0.26 mm1
β = 95.765 (12)º T = 293 (2) K
V = 2830.8 (3) Å3 Block, yellow
Z = 4 0.22 × 0.19 × 0.15 mm

Data collection

Nonius MACH3 sealed-tube diffractometer Rint = 0.031
Radiation source: fine-focus sealed tube θmax = 25.0º
Monochromator: graphite θmin = 2.3º
T = 293(2) K h = 0→10
ω/2θ scans k = −1→16
Absorption correction: ψ scan(North et al., 1968) l = −28→28
Tmin = 0.963, Tmax = 0.991 3 standard reflections
5802 measured reflections every 60 min
4962 independent reflections intensity decay: none
3252 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.122   w = 1/[σ2(Fo2) + (0.054P)2 + 1.3189P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
4962 reflections Δρmax = 0.23 e Å3
361 parameters Δρmin = −0.38 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl2 0.79695 (10) 0.00677 (7) 1.03985 (4) 0.0837 (3)
Cl1 0.16195 (12) −0.09337 (8) 0.47557 (3) 0.0930 (3)
O1 0.59114 (19) 0.19348 (15) 0.77239 (7) 0.0545 (5)
O2 0.01134 (19) 0.30256 (13) 0.83128 (7) 0.0489 (4)
N1 0.1503 (2) 0.11928 (13) 0.79730 (7) 0.0337 (4)
N2 0.3200 (2) 0.40244 (14) 0.83147 (8) 0.0401 (5)
C11 0.3686 (2) 0.22873 (16) 0.82027 (8) 0.0319 (5)
C12 0.4534 (3) 0.17972 (17) 0.77550 (9) 0.0359 (5)
C23 0.2670 (2) 0.32052 (16) 0.79520 (9) 0.0335 (5)
C34 0.1497 (3) 0.31854 (16) 0.70216 (9) 0.0377 (5)
C14 0.4792 (3) 0.27742 (17) 0.86653 (9) 0.0355 (5)
H14 0.5639 0.3075 0.8485 0.043*
C15 0.5539 (3) 0.20976 (17) 0.91073 (9) 0.0381 (5)
C33 0.2867 (3) 0.34333 (16) 0.73527 (9) 0.0363 (5)
C10 0.2658 (3) 0.14841 (17) 0.84174 (9) 0.0347 (5)
H10A 0.3283 0.0915 0.8543 0.042*
H10B 0.2150 0.1737 0.8726 0.042*
C9 0.2157 (3) 0.06607 (18) 0.75306 (9) 0.0397 (5)
H9A 0.1378 0.0615 0.7217 0.048*
H9B 0.2418 −0.0009 0.7653 0.048*
C8 0.3586 (3) 0.11524 (16) 0.73517 (8) 0.0347 (5)
C6 0.3385 (3) 0.05882 (18) 0.63499 (9) 0.0404 (6)
C32 0.4090 (3) 0.3797 (2) 0.71080 (10) 0.0494 (6)
H32 0.4994 0.3992 0.7318 0.059*
C25 0.0276 (3) 0.29142 (17) 0.73259 (9) 0.0393 (5)
C28 −0.0111 (4) 0.2950 (2) 0.61790 (11) 0.0602 (8)
H28 −0.0268 0.2946 0.5796 0.072*
C21 0.3811 (3) 0.36211 (18) 0.88423 (9) 0.0417 (6)
H21A 0.2987 0.3386 0.9051 0.050*
H21B 0.4434 0.4106 0.9060 0.050*
C7 0.4055 (3) 0.10997 (18) 0.68459 (9) 0.0403 (5)
H7 0.4962 0.1448 0.6803 0.048*
C1 0.2430 (3) −0.02498 (18) 0.63447 (10) 0.0433 (6)
H1 0.2161 −0.0503 0.6677 0.052*
C24 0.0865 (3) 0.29821 (17) 0.79197 (10) 0.0383 (5)
C2 0.1876 (3) −0.0710 (2) 0.58587 (10) 0.0495 (6)
H2 0.1237 −0.1264 0.5863 0.059*
C30 0.2659 (4) 0.3587 (2) 0.62012 (11) 0.0594 (7)
H30 0.2638 0.3622 0.5820 0.071*
C20 0.4931 (3) 0.1922 (2) 0.95991 (10) 0.0581 (7)
H20 0.4002 0.2223 0.9666 0.070*
C5 0.3761 (3) 0.0938 (2) 0.58421 (10) 0.0542 (7)
H5 0.4396 0.1493 0.5832 0.065*
C4 0.3216 (4) 0.0480 (2) 0.53541 (10) 0.0632 (8)
H4 0.3479 0.0726 0.5020 0.076*
C27 −0.1289 (4) 0.2677 (2) 0.64769 (12) 0.0646 (8)
H27 −0.2232 0.2490 0.6289 0.078*
C26 −0.1144 (3) 0.2666 (2) 0.70582 (12) 0.0541 (7)
H26 −0.1977 0.2497 0.7252 0.065*
C13 0.0192 (3) 0.0667 (2) 0.81641 (10) 0.0503 (6)
H13A −0.0529 0.0493 0.7854 0.075*
H13B −0.0314 0.1086 0.8409 0.075*
H13C 0.0554 0.0075 0.8355 0.075*
C18 0.7050 (3) 0.0867 (2) 0.99047 (11) 0.0529 (7)
C3 0.2282 (3) −0.0340 (2) 0.53678 (10) 0.0556 (7)
C16 0.6941 (3) 0.1650 (2) 0.90364 (11) 0.0581 (7)
H16 0.7397 0.1770 0.8713 0.070*
C17 0.7690 (3) 0.1030 (2) 0.94300 (11) 0.0635 (8)
H17 0.8623 0.0728 0.9368 0.076*
C19 0.5681 (4) 0.1303 (3) 0.99969 (11) 0.0674 (9)
H19 0.5248 0.1187 1.0325 0.081*
C29 0.1345 (3) 0.32391 (18) 0.64422 (10) 0.0474 (6)
C22 0.2206 (3) 0.48950 (19) 0.83214 (12) 0.0555 (7)
H22A 0.1872 0.5091 0.7950 0.083*
H22B 0.2775 0.5429 0.8508 0.083*
H22C 0.1316 0.4740 0.8511 0.083*
C31 0.3962 (4) 0.3872 (2) 0.65256 (11) 0.0622 (8)
H31 0.4796 0.4126 0.6358 0.075*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl2 0.0812 (6) 0.0873 (6) 0.0762 (5) −0.0048 (5) −0.0242 (4) 0.0362 (5)
Cl1 0.1263 (8) 0.1056 (7) 0.0430 (4) −0.0021 (6) −0.0113 (4) −0.0216 (4)
O1 0.0353 (10) 0.0801 (13) 0.0498 (10) −0.0078 (9) 0.0125 (8) −0.0128 (9)
O2 0.0444 (9) 0.0534 (11) 0.0518 (10) 0.0026 (8) 0.0182 (8) −0.0063 (8)
N1 0.0334 (10) 0.0378 (10) 0.0308 (9) −0.0055 (8) 0.0082 (8) −0.0027 (8)
N2 0.0466 (11) 0.0340 (10) 0.0388 (10) 0.0000 (9) −0.0001 (9) −0.0031 (8)
C11 0.0319 (11) 0.0348 (12) 0.0294 (11) −0.0015 (9) 0.0054 (9) −0.0003 (9)
C12 0.0343 (13) 0.0387 (13) 0.0356 (12) −0.0006 (10) 0.0079 (10) 0.0025 (10)
C23 0.0321 (11) 0.0345 (12) 0.0342 (11) −0.0031 (10) 0.0043 (9) −0.0030 (9)
C34 0.0417 (13) 0.0314 (12) 0.0396 (12) 0.0022 (10) 0.0025 (10) 0.0010 (10)
C14 0.0334 (11) 0.0405 (13) 0.0325 (11) −0.0049 (10) 0.0032 (9) −0.0018 (10)
C15 0.0361 (13) 0.0419 (13) 0.0355 (12) −0.0056 (11) 0.0003 (10) −0.0029 (10)
C33 0.0395 (13) 0.0322 (12) 0.0374 (12) −0.0018 (10) 0.0044 (10) 0.0021 (9)
C10 0.0369 (12) 0.0361 (12) 0.0317 (11) −0.0014 (10) 0.0069 (9) 0.0006 (9)
C9 0.0399 (12) 0.0415 (13) 0.0381 (12) −0.0048 (11) 0.0057 (10) −0.0084 (10)
C8 0.0353 (12) 0.0364 (12) 0.0330 (11) 0.0057 (10) 0.0069 (9) −0.0020 (10)
C6 0.0455 (13) 0.0423 (13) 0.0344 (12) 0.0088 (12) 0.0087 (10) −0.0021 (10)
C32 0.0511 (15) 0.0525 (16) 0.0451 (14) −0.0128 (13) 0.0083 (12) 0.0064 (12)
C25 0.0360 (12) 0.0378 (13) 0.0430 (13) 0.0032 (11) −0.0012 (10) 0.0001 (10)
C28 0.079 (2) 0.0536 (17) 0.0435 (15) −0.0013 (15) −0.0166 (14) −0.0021 (13)
C21 0.0456 (14) 0.0420 (13) 0.0370 (12) −0.0065 (11) 0.0028 (10) −0.0056 (10)
C7 0.0404 (13) 0.0424 (13) 0.0394 (13) 0.0009 (11) 0.0106 (10) −0.0025 (11)
C1 0.0490 (14) 0.0457 (14) 0.0364 (12) 0.0062 (12) 0.0097 (11) −0.0025 (11)
C24 0.0366 (12) 0.0349 (13) 0.0444 (13) 0.0022 (10) 0.0089 (11) −0.0009 (10)
C2 0.0529 (15) 0.0507 (15) 0.0447 (14) 0.0044 (13) 0.0046 (12) −0.0083 (12)
C30 0.084 (2) 0.0600 (17) 0.0349 (14) −0.0036 (16) 0.0117 (14) 0.0073 (13)
C20 0.0528 (16) 0.078 (2) 0.0446 (15) 0.0064 (15) 0.0097 (12) 0.0115 (14)
C5 0.0750 (19) 0.0486 (15) 0.0409 (14) −0.0019 (14) 0.0147 (13) 0.0030 (12)
C4 0.097 (2) 0.0628 (19) 0.0303 (13) 0.0078 (18) 0.0092 (14) 0.0061 (13)
C27 0.0573 (18) 0.0663 (19) 0.0642 (18) −0.0066 (15) −0.0237 (15) −0.0011 (15)
C26 0.0410 (14) 0.0542 (17) 0.0654 (18) −0.0037 (13) −0.0036 (12) 0.0035 (14)
C13 0.0458 (14) 0.0588 (16) 0.0479 (14) −0.0162 (13) 0.0131 (12) −0.0055 (13)
C18 0.0520 (16) 0.0557 (17) 0.0472 (15) −0.0054 (13) −0.0130 (12) 0.0098 (13)
C3 0.0690 (18) 0.0595 (18) 0.0367 (14) 0.0136 (15) −0.0026 (12) −0.0080 (12)
C16 0.0562 (17) 0.075 (2) 0.0441 (15) 0.0151 (15) 0.0114 (13) 0.0113 (14)
C17 0.0539 (16) 0.080 (2) 0.0558 (17) 0.0180 (15) 0.0009 (13) 0.0116 (15)
C19 0.0661 (19) 0.096 (2) 0.0403 (15) −0.0029 (18) 0.0058 (13) 0.0192 (16)
C29 0.0653 (17) 0.0386 (14) 0.0369 (13) 0.0038 (12) −0.0014 (12) 0.0014 (11)
C22 0.0649 (17) 0.0398 (14) 0.0602 (17) 0.0069 (13) −0.0015 (14) −0.0080 (12)
C31 0.075 (2) 0.0643 (19) 0.0504 (16) −0.0144 (16) 0.0210 (15) 0.0113 (14)

Geometric parameters (Å, °)

Cl2—C18 1.747 (3) C25—C26 1.374 (3)
Cl1—C3 1.740 (3) C25—C24 1.489 (3)
O1—C12 1.217 (3) C28—C27 1.361 (4)
O2—C24 1.213 (3) C28—C29 1.411 (4)
N1—C10 1.453 (3) C28—H28 0.9300
N1—C13 1.454 (3) C21—H21A 0.9700
N1—C9 1.457 (3) C21—H21B 0.9700
N2—C21 1.447 (3) C7—H7 0.9300
N2—C22 1.456 (3) C1—C2 1.381 (3)
N2—C23 1.459 (3) C1—H1 0.9300
C11—C12 1.526 (3) C2—C3 1.376 (4)
C11—C10 1.527 (3) C2—H2 0.9300
C11—C14 1.550 (3) C30—C31 1.366 (4)
C11—C23 1.603 (3) C30—C29 1.412 (4)
C12—C8 1.495 (3) C30—H30 0.9300
C23—C33 1.520 (3) C20—C19 1.390 (4)
C23—C24 1.586 (3) C20—H20 0.9300
C34—C25 1.399 (3) C5—C4 1.381 (4)
C34—C33 1.407 (3) C5—H5 0.9300
C34—C29 1.408 (3) C4—C3 1.371 (4)
C14—C15 1.507 (3) C4—H4 0.9300
C14—C21 1.511 (3) C27—C26 1.411 (4)
C14—H14 0.9800 C27—H27 0.9300
C15—C20 1.378 (3) C26—H26 0.9300
C15—C16 1.381 (3) C13—H13A 0.9600
C33—C32 1.358 (3) C13—H13B 0.9600
C10—H10A 0.9700 C13—H13C 0.9600
C10—H10B 0.9700 C18—C17 1.351 (4)
C9—C8 1.506 (3) C18—C19 1.361 (4)
C9—H9A 0.9700 C16—C17 1.384 (4)
C9—H9B 0.9700 C16—H16 0.9300
C8—C7 1.339 (3) C17—H17 0.9300
C6—C5 1.394 (3) C19—H19 0.9300
C6—C1 1.399 (3) C22—H22A 0.9600
C6—C7 1.461 (3) C22—H22B 0.9600
C32—C31 1.418 (4) C22—H22C 0.9600
C32—H32 0.9300 C31—H31 0.9300
C10—N1—C13 113.15 (17) N2—C21—H21B 111.5
C10—N1—C9 113.37 (17) C14—C21—H21B 111.5
C13—N1—C9 111.81 (18) H21A—C21—H21B 109.3
C21—N2—C22 117.14 (19) C8—C7—C6 131.0 (2)
C21—N2—C23 108.65 (18) C8—C7—H7 114.5
C22—N2—C23 117.80 (18) C6—C7—H7 114.5
C12—C11—C10 106.12 (17) C2—C1—C6 121.6 (2)
C12—C11—C14 113.47 (18) C2—C1—H1 119.2
C10—C11—C14 112.87 (17) C6—C1—H1 119.2
C12—C11—C23 110.21 (16) O2—C24—C25 127.9 (2)
C10—C11—C23 111.17 (17) O2—C24—C23 123.8 (2)
C14—C11—C23 103.08 (17) C25—C24—C23 107.40 (18)
O1—C12—C8 121.6 (2) C3—C2—C1 119.2 (3)
O1—C12—C11 121.6 (2) C3—C2—H2 120.4
C8—C12—C11 116.82 (18) C1—C2—H2 120.4
N2—C23—C33 111.81 (18) C31—C30—C29 120.3 (2)
N2—C23—C24 114.92 (18) C31—C30—H30 119.8
C33—C23—C24 101.28 (17) C29—C30—H30 119.8
N2—C23—C11 103.02 (16) C15—C20—C19 121.3 (3)
C33—C23—C11 114.38 (17) C15—C20—H20 119.4
C24—C23—C11 111.90 (17) C19—C20—H20 119.4
C25—C34—C33 113.3 (2) C4—C5—C6 121.7 (3)
C25—C34—C29 123.1 (2) C4—C5—H5 119.2
C33—C34—C29 123.5 (2) C6—C5—H5 119.2
C15—C14—C21 117.74 (18) C3—C4—C5 119.3 (2)
C15—C14—C11 117.01 (19) C3—C4—H4 120.3
C21—C14—C11 101.79 (18) C5—C4—H4 120.3
C15—C14—H14 106.5 C28—C27—C26 122.9 (3)
C21—C14—H14 106.5 C28—C27—H27 118.5
C11—C14—H14 106.5 C26—C27—H27 118.5
C20—C15—C16 116.8 (2) C25—C26—C27 117.4 (3)
C20—C15—C14 123.6 (2) C25—C26—H26 121.3
C16—C15—C14 119.6 (2) C27—C26—H26 121.3
C32—C33—C34 118.9 (2) N1—C13—H13A 109.5
C32—C33—C23 131.5 (2) N1—C13—H13B 109.5
C34—C33—C23 109.56 (19) H13A—C13—H13B 109.5
N1—C10—C11 108.45 (17) N1—C13—H13C 109.5
N1—C10—H10A 110.0 H13A—C13—H13C 109.5
C11—C10—H10A 110.0 H13B—C13—H13C 109.5
N1—C10—H10B 110.0 C17—C18—C19 120.7 (2)
C11—C10—H10B 110.0 C17—C18—Cl2 119.5 (2)
H10A—C10—H10B 108.4 C19—C18—Cl2 119.7 (2)
N1—C9—C8 112.94 (18) C4—C3—C2 121.1 (2)
N1—C9—H9A 109.0 C4—C3—Cl1 119.6 (2)
C8—C9—H9A 109.0 C2—C3—Cl1 119.3 (2)
N1—C9—H9B 109.0 C15—C16—C17 122.2 (2)
C8—C9—H9B 109.0 C15—C16—H16 118.9
H9A—C9—H9B 107.8 C17—C16—H16 118.9
C7—C8—C12 116.1 (2) C18—C17—C16 119.2 (3)
C7—C8—C9 125.3 (2) C18—C17—H17 120.4
C12—C8—C9 118.53 (18) C16—C17—H17 120.4
C5—C6—C1 117.1 (2) C18—C19—C20 119.8 (3)
C5—C6—C7 117.9 (2) C18—C19—H19 120.1
C1—C6—C7 125.0 (2) C20—C19—H19 120.1
C33—C32—C31 118.7 (2) C34—C29—C28 115.6 (2)
C33—C32—H32 120.6 C34—C29—C30 115.9 (2)
C31—C32—H32 120.6 C28—C29—C30 128.5 (2)
C26—C25—C34 119.9 (2) N2—C22—H22A 109.5
C26—C25—C24 132.8 (2) N2—C22—H22B 109.5
C34—C25—C24 107.30 (19) H22A—C22—H22B 109.5
C27—C28—C29 121.0 (3) N2—C22—H22C 109.5
C27—C28—H28 119.5 H22A—C22—H22C 109.5
C29—C28—H28 119.5 H22B—C22—H22C 109.5
N2—C21—C14 101.25 (18) C30—C31—C32 122.5 (3)
N2—C21—H21A 111.5 C30—C31—H31 118.7
C14—C21—H21A 111.5 C32—C31—H31 118.7
C10—C11—C12—O1 −136.4 (2) C33—C34—C25—C26 179.1 (2)
C14—C11—C12—O1 −11.9 (3) C29—C34—C25—C26 1.3 (4)
C23—C11—C12—O1 103.1 (2) C33—C34—C25—C24 0.0 (3)
C10—C11—C12—C8 44.5 (2) C29—C34—C25—C24 −177.8 (2)
C14—C11—C12—C8 168.98 (18) C22—N2—C21—C14 −178.3 (2)
C23—C11—C12—C8 −76.0 (2) C23—N2—C21—C14 45.1 (2)
C21—N2—C23—C33 −148.01 (19) C15—C14—C21—N2 −174.89 (19)
C22—N2—C23—C33 75.8 (3) C11—C14—C21—N2 −45.6 (2)
C21—N2—C23—C24 97.3 (2) C12—C8—C7—C6 −177.0 (2)
C22—N2—C23—C24 −39.0 (3) C9—C8—C7—C6 −0.2 (4)
C21—N2—C23—C11 −24.7 (2) C5—C6—C7—C8 156.9 (3)
C22—N2—C23—C11 −160.95 (19) C1—C6—C7—C8 −25.3 (4)
C12—C11—C23—N2 −126.14 (18) C5—C6—C1—C2 −0.3 (4)
C10—C11—C23—N2 116.48 (18) C7—C6—C1—C2 −178.1 (2)
C14—C11—C23—N2 −4.7 (2) C26—C25—C24—O2 −16.8 (4)
C12—C11—C23—C33 −4.6 (2) C34—C25—C24—O2 162.2 (2)
C10—C11—C23—C33 −121.96 (19) C26—C25—C24—C23 174.4 (3)
C14—C11—C23—C33 116.85 (19) C34—C25—C24—C23 −6.7 (2)
C12—C11—C23—C24 109.9 (2) N2—C23—C24—O2 −38.6 (3)
C10—C11—C23—C24 −7.5 (2) C33—C23—C24—O2 −159.3 (2)
C14—C11—C23—C24 −128.71 (18) C11—C23—C24—O2 78.5 (3)
C12—C11—C14—C15 −80.6 (2) N2—C23—C24—C25 130.85 (19)
C10—C11—C14—C15 40.2 (3) C33—C23—C24—C25 10.2 (2)
C23—C11—C14—C15 160.19 (18) C11—C23—C24—C25 −112.1 (2)
C12—C11—C14—C21 149.59 (19) C6—C1—C2—C3 0.4 (4)
C10—C11—C14—C21 −89.6 (2) C16—C15—C20—C19 −1.6 (4)
C23—C11—C14—C21 30.4 (2) C14—C15—C20—C19 −179.0 (3)
C21—C14—C15—C20 28.1 (3) C1—C6—C5—C4 0.1 (4)
C11—C14—C15—C20 −93.8 (3) C7—C6—C5—C4 178.1 (3)
C21—C14—C15—C16 −149.2 (2) C6—C5—C4—C3 −0.1 (4)
C11—C14—C15—C16 89.0 (3) C29—C28—C27—C26 0.1 (5)
C25—C34—C33—C32 −174.0 (2) C34—C25—C26—C27 1.4 (4)
C29—C34—C33—C32 3.8 (4) C24—C25—C26—C27 −179.8 (3)
C25—C34—C33—C23 7.1 (3) C28—C27—C26—C25 −2.1 (4)
C29—C34—C33—C23 −175.1 (2) C5—C4—C3—C2 0.3 (4)
N2—C23—C33—C32 48.1 (3) C5—C4—C3—Cl1 −178.8 (2)
C24—C23—C33—C32 171.0 (3) C1—C2—C3—C4 −0.4 (4)
C11—C23—C33—C32 −68.5 (3) C1—C2—C3—Cl1 178.66 (19)
N2—C23—C33—C34 −133.19 (19) C20—C15—C16—C17 1.9 (4)
C24—C23—C33—C34 −10.3 (2) C14—C15—C16—C17 179.4 (3)
C11—C23—C33—C34 110.2 (2) C19—C18—C17—C16 0.3 (5)
C13—N1—C10—C11 −162.47 (19) Cl2—C18—C17—C16 178.8 (2)
C9—N1—C10—C11 68.8 (2) C15—C16—C17—C18 −1.3 (5)
C12—C11—C10—N1 −64.3 (2) C17—C18—C19—C20 0.0 (5)
C14—C11—C10—N1 170.79 (17) Cl2—C18—C19—C20 −178.6 (2)
C23—C11—C10—N1 55.5 (2) C15—C20—C19—C18 0.7 (5)
C10—N1—C9—C8 −46.6 (3) C25—C34—C29—C28 −3.1 (4)
C13—N1—C9—C8 −175.97 (19) C33—C34—C29—C28 179.3 (2)
O1—C12—C8—C7 −28.8 (3) C25—C34—C29—C30 176.0 (2)
C11—C12—C8—C7 150.3 (2) C33—C34—C29—C30 −1.5 (4)
O1—C12—C8—C9 154.2 (2) C27—C28—C29—C34 2.4 (4)
C11—C12—C8—C9 −26.7 (3) C27—C28—C29—C30 −176.6 (3)
N1—C9—C8—C7 −151.4 (2) C31—C30—C29—C34 −1.7 (4)
N1—C9—C8—C12 25.3 (3) C31—C30—C29—C28 177.4 (3)
C34—C33—C32—C31 −2.7 (4) C29—C30—C31—C32 2.7 (5)
C23—C33—C32—C31 175.9 (2) C33—C32—C31—C30 −0.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7···O1 0.93 2.40 2.783 (3) 104
C14—H14···O1 0.98 2.44 2.818 (3) 102
C22—H22C···O2 0.96 2.56 3.101 (3) 116
C26—H26···O1i 0.93 2.38 3.307 (3) 176
C21—H21B···Cg1ii 0.97 2.73 3.559 (3) 144

Symmetry codes: (i) x−1, y, z; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2624).

References

  1. Babu, A. R. S. & Raghunathan, R. (2007). Tetrahedron Lett.48, 305–308.
  2. Boruah, M., Konwar, D. & Sharma, S. D. (2007). Tetrahedron Lett.48, 4535–4537.
  3. Bruker (2000). SHELXTL/PC Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chande, M. S., Verma, R. S., Barve, P. A. & Khanwelkar, R. R. (2005). Eur. J. Med. Chem.40, 1143–1148. [DOI] [PubMed]
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  6. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology New York: Oxford University Press Inc.
  7. Enraf–Nonius (1994). CAD-4 EXPRESS Version 5.1/1.2. Enraf–Nonius, Delft, The Netherlands.
  8. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  9. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  10. Horri, S., Fukase, H., Matsuo, T., Kameda, Y., Asano, N. & Matsui, K. (1986). J. Med. Chem.29, 1038–1046. [DOI] [PubMed]
  11. Karthikeyan, K., Perumal, P. T., Etti, S. & Shanmugam, G. (2007). Tetrahedron, 63, 10581–10586.
  12. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  13. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  14. Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807059582/bt2624sup1.cif

e-64-00o99-sup1.cif (27.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807059582/bt2624Isup2.hkl

e-64-00o99-Isup2.hkl (238.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES