Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):m104. doi: 10.1107/S1600536807064501

catena-Poly[[[diaqua­iron(II)]-μ-pyrazine-2,3-dicarboxyl­ato] dihydrate]

Haiyun Xu a,*, Huailing Ma a, Maotian Xu a, Wenxian Zhao a, Baoguo Guo a
PMCID: PMC2915058  PMID: 21200463

Abstract

The crystal structure of the title compound, {[Fe(C6H2N2O4)(H2O)2]·2H2O}n, was synthesized by a diffusion method. It has a one-dimensional polymeric chain structure and the chains are further connected into a three-dimensional structure by hydrogen bonds. The FeII ion has a distorted octa­hedral coordination environment, with two N and two O atoms from the pyrazine-2,3-dicarboxyl­ate ligands in the equatorial plane and with two water mol­ecules in axial positions. The Fe atom lies on a crystallographic centre of symmetry and a twofold rotation axis passes through the pyrazine ring.

Related literature

For related literature, see: Kondo et al. (1999); Kitaura et al. (2002); Zheng et al. (2002); Mao et al. (1996); Castillo et al. (2003); Konar et al. (2004); Muranishi & Okabe (2003); Richard et al. (1973); Xiang et al. (2004); Zou et al. (1999). graphic file with name e-64-0m104-scheme1.jpg

Experimental

Crystal data

  • [Fe(C6H2N2O4)(H2O)2]·2H2O

  • M r = 294.01

  • Monoclinic, Inline graphic

  • a = 12.5650 (2) Å

  • b = 7.5158 (1) Å

  • c = 11.8314 (2) Å

  • β = 110.759 (1)°

  • V = 1044.77 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 298 (2) K

  • 0.23 × 0.20 × 0.18 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.727, T max = 0.777

  • 5477 measured reflections

  • 1291 independent reflections

  • 1219 reflections with I > 2σ’(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.088

  • S = 1.03

  • 1291 reflections

  • 80 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.70 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a ); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a ); molecular graphics: SHELXTL (Sheldrick, 1997b ); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807064501/br2063sup1.cif

e-64-0m104-sup1.cif (13.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807064501/br2063Isup2.hkl

e-64-0m104-Isup2.hkl (63.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O1i 0.85 2.17 2.890 (3) 142
O4—H4A⋯O2i 0.85 2.59 3.227 (3) 133
O4—H4B⋯O1ii 0.85 2.20 3.045 (3) 174
O3—H3A⋯O4iii 0.85 2.41 3.210 (3) 156
O3—H3B⋯O2iv 0.85 1.98 2.720 (2) 145
C3—H3⋯O2v 0.93 2.51 3.232 (3) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors thank the Natural Science Foundation of Henan Province (grant No. 0511020300) for financial support.

supplementary crystallographic information

Comment

Recently, the effective combination of coordination bond and hydrogen bond has been applied in the engineering study of inorganic-organic hybrid material and the construction of metal-organic coordination supramolecular complexes. The suitable organic ligand makes the complex not only to possess novel structure but also produces unique optical, electric and magnetic properties. Pyrazine-2,3-dicarboxylic acid (pzdcH2) has proved to be well suited for the construction of multidimensional frameworks, due to the presence of two adjacent carboxylate groups (O donor atoms) as substituents on the N-heterocyclic pyrazine ring (N donor atoms). A series of one-dimensional, two-dimensional and three-dimensional metal-organic coordination supramolecular complexes have been synthesized and characterized. Now, we report the crystal structure of the title compound (I), and the crystal structure is similar to the structures reported by Mao et al. (1996). In compound 1, the iron atom is hexacoordinate where the sphere about any iron atom includes the N1, N1A, O1, O1A, O3 and O3A atoms. The Fe atom lies on a crystallographic center of symmetry and that the ligand lies on a crystallographic twofold axis. Two coordinated water molecules are on the axis. The coordination distances for the Fe—O1 2.054 (1) Å are similar with the usual carboxyl oxygen to iron distance of 2.091 Å. The pzdc dianion ligands bridge Fe ions to form extended linear chains. In this structure, the pzdc dianion ligand coordinates to two metal centers via chelate interactions involving each nitrogen N(1) and oxygen O(1) from the adjacent carboxylate substituent (Fig. 1). As shown in Fig. 2, the chains are linked in a 3-D surpramolecular network by O—H···O hydrogen-bonding interactions.

Experimental

The title compound was obtained by a diffusion method. In one arm of U-tube was placed (C6H2N2O4)Na2 (42 mg, 0.2 mmol) in water/ethanol (1:1; 10 ml) and in the other H12Cl2O14Fe (73 mg, 0.2 mmol) in water/ethanol (1:1; 10 ml). The red crystals were collected by filtration, washed with distilled water, followed by ethanol and dried under reduced pressure for 2 h.

Analysis found: C 24.39, H 3.41, N 9.26%; C6H10N2O8Fe requires: C 24.51, H 3.43, N 9.53%.

Refinement

The H-atoms were included in the riding-model approximation with C—H = 0.93 - 0.96 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C-aromatic).

Figures

Fig. 1.

Fig. 1.

The structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme. The H atoms are omitted for clarity.

Fig. 2.

Fig. 2.

three-dimensional supramolecular network of (I). O—H···O hydrogen bonds interactions shown.

Crystal data

[Fe(C6H2N2O4)(H2O)2]·2H2O F000 = 600
Mr = 294.01 Dx = 1.869 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3554 reflections
a = 12.5650 (2) Å θ = 3.3–28.2º
b = 7.5158 (1) Å µ = 1.48 mm1
c = 11.8314 (2) Å T = 298 (2) K
β = 110.759 (1)º Block, red
V = 1044.77 (3) Å3 0.23 × 0.20 × 0.18 mm
Z = 4

Data collection

CCD area-detector diffractometer 1291 independent reflections
Radiation source: fine-focus sealed tube 1219 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.019
T = 298(2) K θmax = 28.3º
φ and ω scans θmin = 3.2º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −12→16
Tmin = 0.727, Tmax = 0.777 k = −10→10
5477 measured reflections l = −15→15

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029   w = 1/[σ2(Fo2) + (0.0523P)2 + 1.9364P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.59 e Å3
1291 reflections Δρmin = −0.70 e Å3
80 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.028 (2)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.2500 0.2500 0.5000 0.01865 (18)
C1 0.08321 (16) −0.0176 (3) 0.38935 (17) 0.0225 (4)
C2 0.04250 (15) 0.1436 (3) 0.30732 (16) 0.0202 (4)
C3 0.04814 (18) 0.4486 (3) 0.30161 (19) 0.0289 (5)
H3 0.0840 0.5557 0.3320 0.035*
N1 0.09020 (14) 0.2975 (2) 0.35810 (15) 0.0228 (3)
O1 0.18127 (13) −0.0012 (2) 0.47077 (14) 0.0283 (3)
O2 0.01979 (14) −0.1458 (2) 0.37732 (17) 0.0378 (4)
O3 0.32048 (15) 0.2010 (3) 0.36718 (16) 0.0387 (4)
H3A 0.3336 0.0941 0.3525 0.046*
H3B 0.3619 0.2805 0.3524 0.046*
O4 0.1817 (2) 0.2742 (3) 0.14299 (19) 0.0509 (6)
H4A 0.1531 0.1832 0.1004 0.061*
H4B 0.2226 0.3406 0.1168 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0141 (2) 0.0209 (3) 0.0166 (2) −0.00144 (12) 0.00016 (15) −0.00229 (12)
C1 0.0209 (8) 0.0219 (9) 0.0224 (8) 0.0007 (7) 0.0047 (7) 0.0014 (7)
C2 0.0158 (8) 0.0194 (9) 0.0222 (9) −0.0005 (6) 0.0030 (7) 0.0004 (7)
C3 0.0279 (10) 0.0193 (9) 0.0318 (11) −0.0031 (8) 0.0010 (9) −0.0023 (8)
N1 0.0181 (7) 0.0223 (8) 0.0226 (8) −0.0007 (6) 0.0005 (5) −0.0013 (6)
O1 0.0244 (7) 0.0240 (6) 0.0276 (7) −0.0012 (5) −0.0018 (6) 0.0040 (5)
O2 0.0301 (8) 0.0273 (8) 0.0484 (10) −0.0073 (6) 0.0047 (7) 0.0081 (7)
O3 0.0317 (9) 0.0544 (11) 0.0337 (9) −0.0109 (8) 0.0160 (7) −0.0108 (8)
O4 0.0651 (14) 0.0589 (13) 0.0310 (9) −0.0257 (10) 0.0200 (10) −0.0104 (8)

Geometric parameters (Å, °)

Fe1—O1i 2.0539 (15) C2—N1 1.343 (3)
Fe1—O1 2.0539 (15) C2—C2ii 1.398 (3)
Fe1—O3 2.0919 (17) C3—N1 1.329 (3)
Fe1—O3i 2.0919 (17) C3—C3ii 1.381 (4)
Fe1—N1i 2.1420 (17) C3—H3 0.9300
Fe1—N1 2.1420 (17) O3—H3A 0.8500
C1—O2 1.226 (3) O3—H3B 0.8500
C1—O1 1.273 (2) O4—H4A 0.8500
C1—C2 1.523 (3) O4—H4B 0.8501
O1i—Fe1—O1 180.0 O2—C1—C2 119.56 (17)
O1i—Fe1—O3 91.35 (7) O1—C1—C2 114.93 (16)
O1—Fe1—O3 88.65 (7) N1—C2—C2ii 120.03 (11)
O1i—Fe1—O3i 88.65 (7) N1—C2—C1 113.86 (16)
O1—Fe1—O3i 91.35 (7) C2ii—C2—C1 125.94 (10)
O3—Fe1—O3i 180.000 (1) N1—C3—C3ii 120.82 (11)
O1i—Fe1—N1i 78.46 (6) N1—C3—H3 119.6
O1—Fe1—N1i 101.54 (6) C3ii—C3—H3 119.6
O3—Fe1—N1i 91.76 (7) C3—N1—C2 118.46 (17)
O3i—Fe1—N1i 88.24 (7) C3—N1—Fe1 129.20 (14)
O1i—Fe1—N1 101.54 (6) C2—N1—Fe1 110.65 (13)
O1—Fe1—N1 78.46 (6) C1—O1—Fe1 116.94 (13)
O3—Fe1—N1 88.24 (7) Fe1—O3—H3A 118.9
O3i—Fe1—N1 91.76 (7) Fe1—O3—H3B 118.9
N1i—Fe1—N1 180.0 H3A—O3—H3B 116.4
O2—C1—O1 125.39 (19) H4A—O4—H4B 116.0

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4A···O1iii 0.85 2.17 2.890 (3) 142
O4—H4A···O2iii 0.85 2.59 3.227 (3) 133
O4—H4B···O1iv 0.85 2.20 3.045 (3) 174
O3—H3A···O4v 0.85 2.41 3.210 (3) 156
O3—H3B···O2vi 0.85 1.98 2.720 (2) 145
C3—H3···O2vii 0.93 2.51 3.232 (3) 135

Symmetry codes: (iii) x, −y, z−1/2; (iv) −x+1/2, y+1/2, −z+1/2; (v) −x+1/2, y−1/2, −z+1/2; (vi) x+1/2, y+1/2, z; (vii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2063).

References

  1. Castillo, O., Beobide, G., Luque, A. & Román, P. (2003). Acta Cryst. E59, m800–m802.
  2. Kitaura, R., Fujimoto, K., Noro, S., Kondo, M. & Kitagawa, S. (2002). Angew. Chem. Int. Ed.41, 133–135. [DOI] [PubMed]
  3. Konar, S., Manna, S. C., Zangrando, E. & Chaudhuri, N. R. (2004). Inorg. Chim. Acta, 357, 1593–1597.
  4. Kondo, M., Okubo, T., Asami, A., Noro, S., Yoshitomi, T., Kitagawa, S., Ishii, T., Matsuzaka, H. & Sek, K. (1999). Angew. Chem. Int. Ed.38, 140–143.
  5. Mao, L., Rettig, S. J., Thompson, R. C., Trotter, J. & Xia, S.-H. (1996). Can. J. Chem.74, 433–444.
  6. Muranishi, Y. & Okabe, N. (2003). Acta Cryst. E59, m883–m885. [DOI] [PubMed]
  7. Richard, P., Tran Qui, D. & Bertaut, E. F. (1973). Acta Cryst. B29, 1111–1115.
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  10. Sheldrick, G. M. (1997b). SHELXTL Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
  11. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  12. Xiang, G.-Q., Zhu, N.-W., Hu, M.-L., Xiao, H.-P. & Chen, X.-X. (2004). Acta Cryst. E60, m647–m649.
  13. Zheng, X.-J., Jin, L.-P. & Lu, S.-Z. (2002). Eur. J. Inorg. Chem. pp. 3356–3363.
  14. Zou, J.-Z., Xu, Z., Chen, W., Lo, K. M. & You, X.-Z. (1999). Polyhedron, 18, 1507–1512.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807064501/br2063sup1.cif

e-64-0m104-sup1.cif (13.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807064501/br2063Isup2.hkl

e-64-0m104-Isup2.hkl (63.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES