Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):m109. doi: 10.1107/S1600536807062940

Dibromidotetra­kis(1H-indazole-κN 2)copper(II)

Moayad Hossaini Sadr a, Behzad Soltani a, Shan Gao b, Seik Weng Ng c,*
PMCID: PMC2915062  PMID: 21200468

Abstract

The Cu atom in the title compound, [CuBr2(C7H6N2)4], is surrounded by four N-heterocycles that define an N4 square-planar geometry. The coordination geometry is distorted towards an elongated octa­hedron owing to the presence of the two Br anions, which are located at about 3 Å above and below the square plane. There are two independent molecules in the asymmetric unit, each with their Cu atom lying on an inversion centre.

Related literature

For related structures, see Hossaini Sadr et al. (2004, 2005, 2006). For related literature, see: Allen (2002).graphic file with name e-64-0m109-scheme1.jpg

Experimental

Crystal data

  • [CuBr2(C7H6N2)4]

  • M r = 695.91

  • Triclinic, Inline graphic

  • a = 10.338 (1) Å

  • b = 10.923 (1) Å

  • c = 13.730 (1) Å

  • α = 72.545 (3)°

  • β = 77.329 (3)°

  • γ = 73.890 (3)°

  • V = 1405.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.65 mm−1

  • T = 295 (2) K

  • 0.24 × 0.21 × 0.12 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.073, T max = 0.668

  • 13779 measured reflections

  • 6389 independent reflections

  • 2895 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.228

  • S = 1.13

  • 6389 reflections

  • 356 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −1.00 e Å−3

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807062940/tk2226sup1.cif

e-64-0m109-sup1.cif (25.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062940/tk2226Isup2.hkl

e-64-0m109-Isup2.hkl (312.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—N1 2.027 (5)
Cu1—N3 2.008 (6)
Cu1—Br1 3.033 (1)
Cu2—N5 2.024 (7)
Cu2—N7 2.023 (6)
Cu2—Br2 2.980 (1)

Acknowledgments

The authors thank the Research Office of Azarbaijan University of Tarbiat Moallem, Heilongjiang Province Natural Science Foundation (grant No. B200501), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (grant No. 1054G036), Heilongjiang University and the University of Malaya for supporting this work.

supplementary crystallographic information

Comment

Unlike benzimidazole, which affords a number of adducts with metal salts, indazole furnishes only few complexes (Cambridge Structural Database, Version 5.28; Allen, 2002). The present study of the copper dibromide adduct (I) follows previous studies on Cu complexes of pyrazole-based N-heterocycles (Hossaini Sadr et al., 2005; 2006).

Two independent [Cu(C7H6N2)4]2+2Br- formula units comprise the asymmetric unit in (I), each with the Cu atom situated on a center of inversion. Complex (I) is formally a salt (Fig. 1) owing to the large distance of the Br ions (more than 3 Å) above and below the N4 square plane defined by the four N-heterocycles. In the corresponding imidazole adduct, one Br atom is covalently bonded whereas the other is uncoordinated, so that the geometry is a square pyramid (Hossaini Sadr et al., 2004).

Experimental

Copper dibromide (0.05 g, 0.25 mmol) and indazole (0.12 g, 1 mmol) were dissolved in acetone (25 ml). Slow evapoaration of the filtered solution yielded crystals.

Refinement

The C– and N-bound H atoms were placed in calculated positions and included in the refinement in the riding-model approximation with N—H = 0.86 Å and C—H = 0.93 Å, and with Uiso(H) 1.2Ueq(C,N). The vibrations of the Cu atoms appeared elongated in the directions of the weakly associated Br anions and, accordingly, the displacement factors were restrained to be nearly isotropic. The final difference Fourier map had a maximum and minimum residual density peaks at 1.35 Å from Br1 and Br2, respectively {AU to confirm this}.

Figures

Fig. 1.

Fig. 1.

Molecular structures of the two independent molecules of [Cu(C7H6N2)4]2+ 2Br- (I) showing displacement ellipsoids at the 50% probability level and H atoms as spheres of arbitrary radius. Each of the Cu atoms is located on a crystallographic center of inversion. The Cu···Br interactions are denoted by dashed lines.

Crystal data

[CuBr2(C7H6N2)4] Z = 2
Mr = 695.91 F000 = 694
Triclinic, P1 Dx = 1.645 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 10.338 (1) Å Cell parameters from 7166 reflections
b = 10.923 (1) Å θ = 3.2–27.5º
c = 13.730 (1) Å µ = 3.65 mm1
α = 72.545 (3)º T = 295 (2) K
β = 77.329 (3)º Prism, blue
γ = 73.890 (3)º 0.24 × 0.21 × 0.12 mm
V = 1405.3 (3) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer 6389 independent reflections
Radiation source: fine-focus sealed tube 2895 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.046
Detector resolution: 10.000 pixels mm-1 θmax = 27.5º
T = 295(2) K θmin = 3.2º
ω scans h = −13→13
Absorption correction: multi-scan(ABSCOR; Higashi, 1995) k = −11→14
Tmin = 0.073, Tmax = 0.668 l = −17→17
13779 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061 H-atom parameters constrained
wR(F2) = 0.228   w = 1/[σ2(Fo2) + (0.1018P)2 + 0.0608P] where P = (Fo2 + 2Fc2)/3
S = 1.13 (Δ/σ)max = 0.001
6389 reflections Δρmax = 0.65 e Å3
356 parameters Δρmin = −1.00 e Å3
12 restraints Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.008 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.62566 (10) 0.25866 (8) 0.41676 (7) 0.1011 (4)
Br2 −0.25176 (8) 0.40169 (7) 1.09777 (6) 0.0840 (3)
Cu1 0.5000 0.5000 0.5000 0.0843 (5)
Cu2 0.0000 0.5000 1.0000 0.1230 (8)
N1 0.5411 (5) 0.3924 (6) 0.6427 (4) 0.0636 (14)
N2 0.5199 (6) 0.4347 (6) 0.7267 (5) 0.0774 (16)
H2N 0.4877 0.5155 0.7291 0.093*
N3 0.3196 (6) 0.4493 (7) 0.5367 (4) 0.0748 (17)
N4 0.2108 (6) 0.5102 (6) 0.5891 (5) 0.0803 (17)
H4N 0.2071 0.5797 0.6078 0.096*
N5 0.0567 (9) 0.3532 (6) 0.9272 (5) 0.093 (2)
N6 0.1763 (9) 0.3169 (7) 0.8743 (6) 0.100 (2)
H6N 0.2408 0.3579 0.8604 0.120*
N7 −0.0951 (9) 0.6246 (6) 0.8816 (5) 0.090 (2)
N8 −0.0317 (7) 0.7102 (6) 0.8075 (5) 0.0885 (19)
H8N 0.0514 0.7141 0.8031 0.106*
C1 0.5920 (6) 0.2639 (6) 0.6683 (4) 0.0569 (15)
H1 0.6170 0.2106 0.6226 0.068*
C2 0.6029 (6) 0.2195 (6) 0.7719 (5) 0.0591 (15)
C3 0.6478 (8) 0.0951 (8) 0.8374 (6) 0.084 (2)
H3 0.6801 0.0206 0.8120 0.101*
C4 0.6428 (7) 0.0863 (9) 0.9382 (6) 0.090 (3)
H4 0.6683 0.0038 0.9828 0.108*
C5 0.6006 (8) 0.1974 (10) 0.9777 (6) 0.091 (3)
H5 0.6017 0.1881 1.0471 0.109*
C6 0.5577 (7) 0.3201 (9) 0.9148 (6) 0.086 (2)
H6 0.5296 0.3945 0.9404 0.103*
C7 0.5573 (6) 0.3298 (6) 0.8111 (4) 0.0592 (15)
C8 0.2874 (6) 0.3499 (7) 0.5225 (5) 0.0630 (16)
H8 0.3460 0.2906 0.4871 0.076*
C9 0.1562 (6) 0.3431 (7) 0.5663 (4) 0.0604 (16)
C10 0.0743 (8) 0.2577 (8) 0.5751 (6) 0.086 (2)
H10 0.1071 0.1862 0.5461 0.104*
C11 −0.0530 (8) 0.2800 (9) 0.6261 (7) 0.091 (2)
H11 −0.1082 0.2229 0.6327 0.109*
C12 −0.1034 (7) 0.3866 (9) 0.6692 (6) 0.084 (2)
H12 −0.1923 0.4004 0.7035 0.101*
C13 −0.0257 (7) 0.4712 (8) 0.6621 (6) 0.0763 (19)
H13 −0.0599 0.5420 0.6919 0.092*
C14 0.1048 (6) 0.4501 (6) 0.6102 (5) 0.0581 (15)
C15 −0.0112 (7) 0.2676 (7) 0.9321 (5) 0.0622 (16)
H15 −0.1001 0.2704 0.9658 0.075*
C16 0.0607 (6) 0.1736 (6) 0.8832 (5) 0.0578 (15)
C17 0.0283 (10) 0.0657 (9) 0.8687 (7) 0.096 (3)
H17 −0.0571 0.0472 0.8945 0.116*
C18 0.1251 (14) −0.0105 (9) 0.8162 (8) 0.108 (3)
H18 0.1061 −0.0843 0.8069 0.130*
C19 0.2487 (11) 0.0154 (10) 0.7764 (7) 0.104 (3)
H19 0.3122 −0.0410 0.7408 0.124*
C20 0.2836 (7) 0.1224 (9) 0.7868 (6) 0.088 (2)
H20 0.3684 0.1409 0.7577 0.105*
C21 0.1863 (6) 0.2026 (6) 0.8430 (4) 0.0564 (14)
C22 −0.2200 (10) 0.6462 (7) 0.8630 (6) 0.086 (2)
H22 −0.2851 0.5999 0.9022 0.103*
C23 −0.2393 (9) 0.7522 (7) 0.7731 (6) 0.080 (2)
C24 −0.3451 (10) 0.8178 (9) 0.7148 (8) 0.103 (3)
H24 −0.4286 0.7942 0.7328 0.124*
C25 −0.3207 (13) 0.9197 (9) 0.6288 (7) 0.112 (3)
H25 −0.3900 0.9653 0.5893 0.135*
C26 −0.1982 (13) 0.9552 (10) 0.6004 (7) 0.113 (3)
H26 −0.1866 1.0240 0.5423 0.135*
C27 −0.0951 (11) 0.8941 (8) 0.6536 (6) 0.104 (3)
H27 −0.0121 0.9187 0.6346 0.124*
C28 −0.1185 (9) 0.7895 (7) 0.7408 (6) 0.080 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.1416 (8) 0.0637 (6) 0.0882 (6) 0.0001 (5) −0.0230 (5) −0.0221 (4)
Br2 0.0917 (6) 0.0649 (5) 0.0874 (6) −0.0117 (4) −0.0083 (4) −0.0166 (4)
Cu1 0.0608 (7) 0.1132 (11) 0.0637 (7) −0.0366 (7) −0.0251 (6) 0.0265 (7)
Cu2 0.232 (2) 0.0513 (8) 0.0766 (8) 0.0341 (10) −0.0776 (11) −0.0246 (6)
N1 0.054 (3) 0.085 (4) 0.051 (3) −0.021 (3) −0.012 (2) −0.007 (3)
N2 0.070 (3) 0.069 (4) 0.083 (4) −0.011 (3) −0.020 (3) −0.003 (3)
N3 0.064 (3) 0.086 (5) 0.057 (3) −0.012 (3) −0.015 (3) 0.007 (3)
N4 0.087 (4) 0.073 (4) 0.080 (4) −0.021 (3) −0.021 (3) −0.011 (3)
N5 0.134 (6) 0.056 (4) 0.067 (4) 0.023 (4) −0.027 (4) −0.016 (3)
N6 0.151 (7) 0.067 (4) 0.097 (5) −0.041 (5) −0.055 (5) −0.002 (4)
N7 0.151 (6) 0.042 (3) 0.072 (4) 0.002 (4) −0.044 (4) −0.010 (3)
N8 0.122 (5) 0.058 (4) 0.089 (4) −0.008 (4) −0.050 (4) −0.011 (3)
C1 0.064 (3) 0.054 (4) 0.045 (3) −0.007 (3) −0.014 (3) −0.004 (3)
C2 0.058 (3) 0.056 (4) 0.058 (3) −0.009 (3) −0.009 (3) −0.011 (3)
C3 0.097 (5) 0.059 (4) 0.084 (5) −0.008 (4) −0.021 (4) −0.005 (4)
C4 0.077 (5) 0.095 (6) 0.070 (5) −0.010 (4) −0.021 (4) 0.018 (4)
C5 0.083 (5) 0.121 (8) 0.055 (4) −0.018 (5) −0.016 (4) −0.005 (5)
C6 0.078 (5) 0.100 (6) 0.072 (5) −0.009 (4) −0.011 (4) −0.023 (4)
C7 0.055 (3) 0.069 (4) 0.047 (3) −0.013 (3) −0.009 (3) −0.004 (3)
C8 0.051 (3) 0.066 (4) 0.063 (4) −0.004 (3) −0.003 (3) −0.017 (3)
C9 0.051 (3) 0.073 (4) 0.053 (3) −0.018 (3) −0.009 (3) −0.006 (3)
C10 0.084 (5) 0.081 (5) 0.103 (6) −0.026 (4) −0.009 (4) −0.034 (4)
C11 0.076 (5) 0.098 (7) 0.106 (6) −0.042 (5) −0.028 (5) −0.005 (5)
C12 0.059 (4) 0.092 (6) 0.079 (5) −0.015 (4) −0.001 (4) 0.002 (4)
C13 0.068 (4) 0.070 (5) 0.082 (5) −0.005 (4) −0.006 (4) −0.020 (4)
C14 0.049 (3) 0.063 (4) 0.060 (3) −0.025 (3) −0.007 (3) 0.000 (3)
C15 0.062 (4) 0.061 (4) 0.056 (3) 0.000 (3) −0.006 (3) −0.017 (3)
C16 0.059 (3) 0.052 (4) 0.057 (3) −0.010 (3) −0.013 (3) −0.006 (3)
C17 0.118 (6) 0.086 (6) 0.096 (6) −0.060 (6) −0.028 (5) 0.001 (5)
C18 0.166 (10) 0.056 (5) 0.117 (8) −0.011 (6) −0.058 (8) −0.029 (5)
C19 0.123 (8) 0.086 (7) 0.094 (6) 0.031 (6) −0.044 (6) −0.042 (5)
C20 0.065 (4) 0.117 (7) 0.077 (5) −0.011 (4) −0.011 (4) −0.026 (5)
C21 0.072 (4) 0.044 (3) 0.054 (3) −0.011 (3) −0.016 (3) −0.012 (3)
C22 0.120 (7) 0.055 (5) 0.073 (5) 0.004 (4) −0.014 (5) −0.023 (4)
C23 0.112 (6) 0.055 (4) 0.068 (4) 0.009 (4) −0.030 (4) −0.022 (3)
C24 0.106 (6) 0.098 (7) 0.104 (6) 0.011 (5) −0.028 (5) −0.045 (5)
C25 0.153 (9) 0.082 (7) 0.087 (6) 0.032 (6) −0.064 (7) −0.020 (5)
C26 0.161 (10) 0.084 (7) 0.074 (5) 0.010 (7) −0.030 (7) −0.020 (5)
C27 0.156 (8) 0.059 (5) 0.087 (5) −0.005 (5) −0.038 (6) −0.009 (4)
C28 0.118 (6) 0.050 (4) 0.069 (4) −0.003 (4) −0.035 (4) −0.012 (3)

Geometric parameters (Å, °)

Cu1—N1 2.027 (5) C6—H6 0.9300
Cu1—N3 2.008 (6) C8—C9 1.370 (8)
Cu1—Br1 3.033 (1) C8—H8 0.9300
Cu2—N5 2.024 (7) C9—C10 1.389 (10)
Cu2—N7 2.023 (6) C9—C14 1.395 (9)
Cu2—Br2 2.980 (1) C10—C11 1.342 (11)
Cu1—N3i 2.008 (6) C10—H10 0.9300
Cu1—N1i 2.027 (5) C11—C12 1.385 (12)
Cu2—N7ii 2.023 (6) C11—H11 0.9300
Cu2—N5ii 2.024 (7) C12—C13 1.354 (12)
N1—N2 1.320 (8) C12—H12 0.9300
N1—C1 1.321 (8) C13—C14 1.374 (8)
N2—C7 1.400 (8) C13—H13 0.9300
N2—H2N 0.8600 C15—C16 1.352 (9)
N3—C8 1.298 (9) C15—H15 0.9300
N3—N4 1.320 (8) C16—C21 1.378 (8)
N4—C14 1.364 (8) C16—C17 1.389 (10)
N4—H4N 0.8600 C17—C18 1.340 (13)
N5—C15 1.295 (10) C17—H17 0.9300
N5—N6 1.312 (9) C18—C19 1.347 (13)
N6—C21 1.409 (9) C18—H18 0.9300
N6—H6N 0.8600 C19—C20 1.368 (13)
N7—C22 1.315 (10) C19—H19 0.9300
N7—N8 1.347 (9) C20—C21 1.397 (10)
N8—C28 1.359 (9) C20—H20 0.9300
N8—H8N 0.8600 C22—C23 1.424 (10)
C1—C2 1.377 (8) C22—H22 0.9300
C1—H1 0.9300 C23—C28 1.362 (11)
C2—C7 1.388 (9) C23—C24 1.399 (12)
C2—C3 1.404 (9) C24—C25 1.391 (13)
C3—C4 1.348 (11) C24—H24 0.9300
C3—H3 0.9300 C25—C26 1.368 (14)
C4—C5 1.398 (12) C25—H25 0.9300
C4—H4 0.9300 C26—C27 1.330 (13)
C5—C6 1.372 (11) C26—H26 0.9300
C5—H5 0.9300 C27—C28 1.415 (11)
C6—C7 1.396 (9) C27—H27 0.9300
N3—Cu1—N3i 180.0 (4) C5—C6—C7 118.0 (8)
N3—Cu1—N1 88.2 (2) C5—C6—H6 121.0
N3i—Cu1—N1 91.8 (2) C7—C6—H6 121.0
N3—Cu1—N1i 91.8 (2) C2—C7—C6 121.1 (6)
N3i—Cu1—N1i 88.2 (2) C2—C7—N2 104.9 (6)
N1—Cu1—N1i 180.00 (16) C6—C7—N2 133.9 (7)
N3—Cu1—Br1i 90.3 (2) N3—C8—C9 111.5 (6)
N3i—Cu1—Br1i 89.7 (2) N3—C8—H8 124.2
N1—Cu1—Br1i 89.84 (18) C9—C8—H8 124.2
N1i—Cu1—Br1i 90.16 (18) C8—C9—C10 134.8 (7)
N3—Cu1—Br1 89.7 (2) C8—C9—C14 105.7 (6)
N3i—Cu1—Br1 90.3 (2) C10—C9—C14 119.6 (6)
N1—Cu1—Br1 90.16 (18) C11—C10—C9 119.0 (8)
N1i—Cu1—Br1 89.84 (18) C11—C10—H10 120.5
Br1i—Cu1—Br1 180.00 (3) C9—C10—H10 120.5
N7ii—Cu2—N7 180.000 (2) C10—C11—C12 121.1 (7)
N7ii—Cu2—N5ii 91.3 (2) C10—C11—H11 119.5
N7—Cu2—N5ii 88.7 (2) C12—C11—H11 119.5
N7ii—Cu2—N5 88.7 (2) C13—C12—C11 121.2 (7)
N7—Cu2—N5 91.3 (2) C13—C12—H12 119.4
N5ii—Cu2—N5 180.000 (2) C11—C12—H12 119.4
N7ii—Cu2—Br2 89.4 (2) C12—C13—C14 118.6 (8)
N7—Cu2—Br2 90.6 (2) C12—C13—H13 120.7
N5ii—Cu2—Br2 92.4 (3) C14—C13—H13 120.7
N5—Cu2—Br2 87.6 (3) N4—C14—C13 135.3 (7)
N7ii—Cu2—Br2ii 90.6 (2) N4—C14—C9 104.2 (5)
N7—Cu2—Br2ii 89.4 (2) C13—C14—C9 120.6 (6)
N5ii—Cu2—Br2ii 87.6 (3) N5—C15—C16 112.9 (6)
N5—Cu2—Br2ii 92.4 (3) N5—C15—H15 123.6
Br2—Cu2—Br2ii 180.00 (3) C16—C15—H15 123.6
N2—N1—C1 107.6 (5) C15—C16—C21 106.6 (6)
N2—N1—Cu1 127.4 (5) C15—C16—C17 132.2 (7)
C1—N1—Cu1 125.0 (5) C21—C16—C17 121.2 (7)
N1—N2—C7 110.5 (6) C18—C17—C16 117.3 (8)
N1—N2—H2N 124.8 C18—C17—H17 121.3
C7—N2—H2N 124.8 C16—C17—H17 121.3
C8—N3—N4 106.6 (6) C17—C18—C19 122.6 (9)
C8—N3—Cu1 129.2 (5) C17—C18—H18 118.7
N4—N3—Cu1 124.0 (6) C19—C18—H18 118.7
N3—N4—C14 112.1 (6) C18—C19—C20 121.9 (8)
N3—N4—H4N 124.0 C18—C19—H19 119.1
C14—N4—H4N 124.0 C20—C19—H19 119.1
C15—N5—N6 105.9 (6) C19—C20—C21 117.1 (7)
C15—N5—Cu2 127.4 (6) C19—C20—H20 121.5
N6—N5—Cu2 126.4 (7) C21—C20—H20 121.5
N5—N6—C21 111.7 (7) C16—C21—C20 119.8 (6)
N5—N6—H6N 124.1 C16—C21—N6 102.9 (6)
C21—N6—H6N 124.1 C20—C21—N6 137.2 (7)
C22—N7—N8 108.1 (6) N7—C22—C23 108.8 (8)
C22—N7—Cu2 131.1 (6) N7—C22—H22 125.6
N8—N7—Cu2 120.6 (6) C23—C22—H22 125.6
N7—N8—C28 110.0 (7) C28—C23—C24 118.2 (8)
N7—N8—H8N 125.0 C28—C23—C22 105.7 (7)
C28—N8—H8N 125.0 C24—C23—C22 136.1 (10)
N1—C1—C2 110.9 (6) C25—C24—C23 117.5 (10)
N1—C1—H1 124.6 C25—C24—H24 121.2
C2—C1—H1 124.6 C23—C24—H24 121.2
C1—C2—C7 106.1 (5) C26—C25—C24 122.1 (9)
C1—C2—C3 134.0 (7) C26—C25—H25 119.0
C7—C2—C3 119.9 (6) C24—C25—H25 119.0
C4—C3—C2 118.4 (8) C27—C26—C25 121.9 (10)
C4—C3—H3 120.8 C27—C26—H26 119.0
C2—C3—H3 120.8 C25—C26—H26 119.0
C3—C4—C5 122.1 (7) C26—C27—C28 116.4 (10)
C3—C4—H4 119.0 C26—C27—H27 121.8
C5—C4—H4 119.0 C28—C27—H27 121.8
C6—C5—C4 120.4 (7) N8—C28—C23 107.4 (7)
C6—C5—H5 119.8 N8—C28—C27 128.8 (9)
C4—C5—H5 119.8 C23—C28—C27 123.8 (8)
N3—Cu1—N1—N2 −93.9 (5) C5—C6—C7—N2 179.1 (7)
N3i—Cu1—N1—N2 86.1 (5) N1—N2—C7—C2 −0.1 (7)
Br1i—Cu1—N1—N2 −3.6 (5) N1—N2—C7—C6 178.9 (7)
Br1—Cu1—N1—N2 176.4 (5) N4—N3—C8—C9 −0.4 (8)
N3—Cu1—N1—C1 84.4 (5) Cu1—N3—C8—C9 174.8 (4)
N3i—Cu1—N1—C1 −95.6 (5) N3—C8—C9—C10 −178.6 (8)
Br1i—Cu1—N1—C1 174.6 (5) N3—C8—C9—C14 0.5 (7)
Br1—Cu1—N1—C1 −5.4 (5) C8—C9—C10—C11 178.9 (7)
C1—N1—N2—C7 −0.5 (7) C14—C9—C10—C11 −0.2 (11)
Cu1—N1—N2—C7 178.0 (4) C9—C10—C11—C12 0.4 (13)
N1—Cu1—N3—C8 −91.4 (6) C10—C11—C12—C13 −0.7 (13)
N1i—Cu1—N3—C8 88.6 (6) C11—C12—C13—C14 0.7 (12)
Br1i—Cu1—N3—C8 178.8 (6) N3—N4—C14—C13 178.6 (7)
Br1—Cu1—N3—C8 −1.2 (6) N3—N4—C14—C9 0.3 (7)
N1—Cu1—N3—N4 83.0 (5) C12—C13—C14—N4 −178.6 (7)
N1i—Cu1—N3—N4 −97.0 (5) C12—C13—C14—C9 −0.5 (10)
Br1i—Cu1—N3—N4 −6.8 (5) C8—C9—C14—N4 −0.5 (7)
Br1—Cu1—N3—N4 173.2 (5) C10—C9—C14—N4 178.9 (6)
C8—N3—N4—C14 0.1 (7) C8—C9—C14—C13 −179.1 (6)
Cu1—N3—N4—C14 −175.4 (4) C10—C9—C14—C13 0.2 (10)
N7ii—Cu2—N5—C15 91.4 (7) N6—N5—C15—C16 −0.1 (8)
N7—Cu2—N5—C15 −88.6 (7) Cu2—N5—C15—C16 −173.3 (4)
Br2—Cu2—N5—C15 2.0 (6) N5—C15—C16—C21 −0.2 (8)
Br2ii—Cu2—N5—C15 −178.0 (6) N5—C15—C16—C17 −179.4 (7)
N7ii—Cu2—N5—N6 −80.5 (6) C15—C16—C17—C18 −179.4 (8)
N7—Cu2—N5—N6 99.5 (6) C21—C16—C17—C18 1.5 (11)
Br2—Cu2—N5—N6 −170.0 (6) C16—C17—C18—C19 −1.3 (14)
Br2ii—Cu2—N5—N6 10.0 (6) C17—C18—C19—C20 −0.2 (15)
C15—N5—N6—C21 0.3 (8) C18—C19—C20—C21 1.5 (13)
Cu2—N5—N6—C21 173.7 (4) C15—C16—C21—C20 −179.5 (6)
N5ii—Cu2—N7—C22 −92.2 (7) C17—C16—C21—C20 −0.2 (10)
N5—Cu2—N7—C22 87.8 (7) C15—C16—C21—N6 0.4 (7)
Br2—Cu2—N7—C22 0.3 (7) C17—C16—C21—N6 179.7 (6)
Br2ii—Cu2—N7—C22 −179.7 (7) C19—C20—C21—C16 −1.3 (11)
N5ii—Cu2—N7—N8 83.4 (6) C19—C20—C21—N6 178.9 (7)
N5—Cu2—N7—N8 −96.6 (6) N5—N6—C21—C16 −0.4 (7)
Br2—Cu2—N7—N8 175.8 (5) N5—N6—C21—C20 179.4 (8)
Br2ii—Cu2—N7—N8 −4.2 (5) N8—N7—C22—C23 −0.7 (8)
C22—N7—N8—C28 0.8 (8) Cu2—N7—C22—C23 175.2 (5)
Cu2—N7—N8—C28 −175.7 (5) N7—C22—C23—C28 0.4 (8)
N2—N1—C1—C2 0.9 (7) N7—C22—C23—C24 178.5 (8)
Cu1—N1—C1—C2 −177.6 (4) C28—C23—C24—C25 −1.7 (11)
N1—C1—C2—C7 −1.0 (7) C22—C23—C24—C25 −179.7 (8)
N1—C1—C2—C3 179.1 (7) C23—C24—C25—C26 0.6 (14)
C1—C2—C3—C4 −179.0 (7) C24—C25—C26—C27 0.0 (15)
C7—C2—C3—C4 1.1 (11) C25—C26—C27—C28 0.5 (14)
C2—C3—C4—C5 −3.0 (12) N7—N8—C28—C23 −0.5 (8)
C3—C4—C5—C6 2.4 (12) N7—N8—C28—C27 178.6 (7)
C4—C5—C6—C7 0.2 (11) C24—C23—C28—N8 −178.4 (7)
C1—C2—C7—C6 −178.5 (6) C22—C23—C28—N8 0.1 (8)
C3—C2—C7—C6 1.4 (10) C24—C23—C28—C27 2.4 (11)
C1—C2—C7—N2 0.6 (7) C22—C23—C28—C27 −179.1 (7)
C3—C2—C7—N2 −179.4 (6) C26—C27—C28—N8 179.2 (8)
C5—C6—C7—C2 −2.0 (10) C26—C27—C28—C23 −1.7 (13)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2226).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Hossaini Sadr, M., Jalili, A. R., Razmi, H. & Ng, S. W. (2005). J. Organomet. Chem.690, 2128–2132.
  5. Hossaini Sadr, M., Sardroodi, J. J., Zare, D., Brooks, N. R., Clegg, W. & Song, Y. (2006). Polyhedron, 25, 3285–3288.
  6. Hossaini Sadr, M., Zare, D., Lewis, W., Wikaira, J., Robinson, W. T. & Ng, S. W. (2004). Acta Cryst. E60, m1324–m1326.
  7. Rigaku Corporation (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  8. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  9. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  10. Westrip, S. P. (2007). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807062940/tk2226sup1.cif

e-64-0m109-sup1.cif (25.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062940/tk2226Isup2.hkl

e-64-0m109-Isup2.hkl (312.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES