Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):m136–m137. doi: 10.1107/S160053680706494X

Dichloridobis(7-amino-2,4-dimethyl-1,8-naphthyridine-κ2 N,N′)cobalt(II) methanol disolvate

Shouwen Jin a,*, Ying Sun b
PMCID: PMC2915083  PMID: 21200493

Abstract

The title compound, [CoCl2(C10H11N3)2]·2CH3OH, crystallizes with an elongated Co coordination polyhedron in a very distorted octa­hedral geometry. Both naphthyridine ligands coordinate to the Co atom via two N atoms in a bidentate chelating mode. The remaining coordination sites are occupied by two Cl atoms. Two uncoordinated solvent methanol mol­ecules are hydrogen bonded to the Cl atoms. Additional N—H⋯O, C—H⋯Cl and N—H⋯Cl hydrogen bonds, and π–π stacking inter­actions [centroid–centroid distance 3.664 (4) Å], give rise to a three-dimensional network structure.

Related literature

For related literature, see: Bayer (1979); Che et al. (2001); Gavrilova & Bosnich (2004); Harvey et al. (2004); Jin et al. (2007); Kukrek et al. (2006); Mintert & Sheldrick (1995a ,b ); Oskui et al. (1999); Oskui & Sheldrick (1999).graphic file with name e-64-0m136-scheme1.jpg

Experimental

Crystal data

  • [CoCl2(C10H11N3)2]·2CH4O

  • M r = 540.35

  • Triclinic, Inline graphic

  • a = 9.694 (3) Å

  • b = 10.651 (3) Å

  • c = 14.154 (4) Å

  • α = 79.523 (4)°

  • β = 78.548 (4)°

  • γ = 65.697 (4)°

  • V = 1297.2 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 298 (2) K

  • 0.27 × 0.21 × 0.18 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.794, T max = 0.855

  • 6885 measured reflections

  • 4521 independent reflections

  • 2999 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.125

  • S = 1.04

  • 4521 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a ); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a ); molecular graphics: SHELXTL (Sheldrick, 1997b ); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680706494X/zl2083sup1.cif

e-64-0m136-sup1.cif (25.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706494X/zl2083Isup2.hkl

e-64-0m136-Isup2.hkl (221.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯Cl1i 0.82 2.35 3.162 (4) 172
O1—H1⋯Cl1ii 0.82 2.44 3.194 (4) 154
N6—H6B⋯O2iii 0.86 2.06 2.918 (4) 175
N6—H6A⋯Cl2 0.86 2.45 3.269 (4) 159
N3—H3B⋯O1iv 0.86 2.09 2.947 (4) 175
N3—H3A⋯Cl1 0.86 2.51 3.309 (3) 156
C22—H22B⋯C17i 0.96 2.91 3.789 (7) 154
C22—H22B⋯C18i 0.96 2.71 3.575 (6) 150
C4—H4⋯Cl2v 0.93 2.85 3.705 (4) 153
C7—H7⋯Cl1vi 0.93 2.87 3.757 (4) 160
C13—H13⋯Cl1ii 0.93 2.88 3.733 (4) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors thank the Zhejiang Forestry University Science Foundation for financial support.

supplementary crystallographic information

Comment

Molecular structures and chemical properties of transition metal complexes of 1,8-naphthyridine (napy) and its derivatives have received much attention (Kukrek et al., 2006; Che et al., 2001) as the ligands can link to metals via several coordination modes such as monodentate, chelating bidentate, and in a dinuclear bridging fashion (Gavrilova & Bosnich, 2004). 5,7-Dimethyl-1,8-naphthyridin-2-amine is a potentially tridentate ligand and is capable of linking two to four metal atoms together to form metal aggregates (Oskui et al., 1999; Mintert & Sheldrick, 1995a; Oskui & Sheldrick, 1999; Mintert & Sheldrick, 1995b). The coordination chemistry of 5,7-dimethyl-1,8-naphthyridine-2-amine (L) has not been well studied before although a Co(II) complex (Co(L)2Cl2) was once described in a US patent (Bayer, 1979). As an extension of our study on naphthyridine coordination chemistry (Jin et al., 2007), herein we report the synthesis and structure of the title complex as its bis methanol solvate, (Co(L)2(Cl)2).2(CH3OH).

The title compound was obtained as violet crystals by reacting cobalt chloride hexahydrate and L in methanol. The compound is air stable and light insensitive, and does not dissolve in water and most organic solvents. X-ray structural analysis shows that the complex is mononuclear, its molecular structure is shown in Fig. 1. The Co atom is positioned on an inversion center and is bonded to two L ligands and two chloride ions. Both of the two ligands coordinate to the metal center via two nitrogen atoms in a bidentate chelating fashion. The two chloride anions coordinated to the Co ion complete a very distorted octahedral geometry. With a N—Co—N bite angle of only 58.86 (11), and 60.39 (11) ° the structure can also be seen as a pseudotetrahedral complex with each of the naphthyridine ligands L counted as a singly bonded entity. The N—Co—N angle is of necessity quite small, thereby allowing for the Cl(2)—Co(1)—Cl(1) angle to expand to 96.99 (5) °. Perhaps as a result of the smaller spatial requirements of the chelating naphthyridine, the chloride ions are in cis-arrangement which is different from reported results (Harvey et al., 2004).

The two naphthyridine rings are basically planar with an r.m.s. deviation of only 0.0098, and 0.0183 ° respectively, and both ligands are almost perpendicular to each other with an angle between the root mean square planes of the two ligands of 85.4 °.

The free methanol molecules are connected to the (Co(L)2(Cl)2) moieties via O—H···Cl and N—H···O hydrogen bonds, and the (Co(L)2(Cl)2) moieties themselves are connected with each other by N—H···Cl hydrogen bonds (see Table 1). The closest C—C distance between adjacent parallel naphthyridyl rings is 3.378 (4) Å, the corresponding centroid to centroid distance for the naphthyridyl rings is 3.664 Å, which implies the presence of π-π stacking interactions between the naphthyridyl rings. Via all these interactions the compound forms a three-dimensional network structure as shown in Fig. 2.

Experimental

All reagents and solvents were used as obtained without further purification. The CHN elemental analyses were performed on a Perkin-Elmer model 2400 elemental analyzer.

To a methanol solution of cobalt chloride hexahydrate (24 mg, 0.1 mmol), was added L (17.4 mg, 0.1 mmol) in 10 ml of methanol. The solution was stirred for three minutes, then the solution was filtered. The solution was left standing at room temperature for several days, and violet crystals were isolated after slow evaporation of the methanol solution in air. Yield: 38 mg, 70.3%. Anal. Calcd for C22H30Cl2CoN6O2: C, 48.86; H, 5.55; N, 15.55; Found: C, 48.81; H, 5.52; N, 15.49.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with aromatic C—H = 0.93 Å, and methyl C—H = 0.96 Å. Hydrogen atoms bound to methanol molecules and amine groups were fixed, and restrained to O—H = 0.85 (1) Å, and N—H = 0.86 (1) Å.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The three dimensional network structure with π-π interactions and hydrogen bonds. The dashed lines present hydrogen bonds, the hydrogen atoms were omitted for clarity.

Crystal data

[CoCl2(C10H11N3)2]·2CH4O Z = 2
Mr = 540.35 F000 = 562
Triclinic, P1 Dx = 1.383 Mg m3
a = 9.694 (3) Å Mo Kα radiation λ = 0.71073 Å
b = 10.651 (3) Å Cell parameters from 2019 reflections
c = 14.154 (4) Å θ = 2.4–24.7º
α = 79.523 (4)º µ = 0.90 mm1
β = 78.548 (4)º T = 298 (2) K
γ = 65.697 (4)º Block, violet
V = 1297.2 (6) Å3 0.27 × 0.21 × 0.18 mm

Data collection

Bruker SMART APEX CCD diffractometer 4521 independent reflections
Radiation source: fine-focus sealed tube 2999 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.021
T = 298(2) K θmax = 25.0º
phi and ω scans θmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −9→11
Tmin = 0.794, Tmax = 0.855 k = −12→12
6885 measured reflections l = −15→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.125   w = 1/[σ2(Fo2) + (0.0565P)2 + 0.2762P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
4521 reflections Δρmax = 0.45 e Å3
300 parameters Δρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.96112 (6) 0.72223 (5) 0.23994 (3) 0.04516 (18)
Cl1 0.94391 (12) 0.51632 (9) 0.20816 (7) 0.0583 (3)
Cl2 1.22929 (11) 0.63991 (12) 0.21805 (8) 0.0690 (3)
N1 0.9345 (3) 0.9511 (3) 0.2182 (2) 0.0448 (7)
N2 0.8771 (3) 0.8510 (3) 0.1144 (2) 0.0426 (7)
N3 0.8215 (4) 0.7345 (3) 0.0155 (2) 0.0671 (10)
H3A 0.8541 0.6596 0.0544 0.080*
H3B 0.7872 0.7340 −0.0359 0.080*
N4 0.7015 (3) 0.7946 (3) 0.3218 (2) 0.0460 (7)
N5 0.9139 (3) 0.7129 (3) 0.3919 (2) 0.0437 (7)
N6 1.1406 (4) 0.6339 (4) 0.4536 (2) 0.0703 (10)
H6A 1.1885 0.6285 0.3955 0.084*
H6B 1.1906 0.6110 0.5021 0.084*
O1 0.7241 (4) 0.7211 (4) 0.8345 (2) 0.0855 (10)
H1 0.7914 0.6478 0.8186 0.089 (18)*
O2 0.2964 (4) 0.5474 (4) 0.6250 (2) 0.0891 (11)
H2 0.2413 0.5261 0.6713 0.12 (2)*
C1 0.8775 (4) 0.9703 (4) 0.1350 (3) 0.0425 (9)
C2 0.8242 (4) 0.8508 (4) 0.0350 (3) 0.0481 (9)
C3 0.7689 (4) 0.9765 (4) −0.0293 (3) 0.0545 (10)
H3 0.7321 0.9762 −0.0851 0.065*
C4 0.7702 (4) 1.0942 (4) −0.0091 (3) 0.0544 (10)
H4 0.7348 1.1748 −0.0513 0.065*
C5 0.8252 (4) 1.0972 (4) 0.0763 (3) 0.0463 (9)
C6 0.8331 (4) 1.2114 (4) 0.1076 (3) 0.0523 (10)
C7 0.8943 (5) 1.1897 (4) 0.1915 (3) 0.0584 (11)
H7 0.9018 1.2636 0.2132 0.070*
C8 0.9459 (4) 1.0583 (4) 0.2454 (3) 0.0492 (9)
C9 0.7767 (5) 1.3537 (4) 0.0519 (3) 0.0749 (13)
H9A 0.7672 1.4213 0.0919 0.112*
H9B 0.6789 1.3739 0.0337 0.112*
H9C 0.8481 1.3564 −0.0053 0.112*
C10 1.0178 (5) 1.0346 (5) 0.3348 (3) 0.0726 (13)
H10A 1.0493 0.9387 0.3603 0.109*
H10B 0.9451 1.0909 0.3824 0.109*
H10C 1.1052 1.0592 0.3189 0.109*
C11 0.7591 (4) 0.7613 (3) 0.4062 (3) 0.0423 (9)
C12 0.9893 (5) 0.6778 (4) 0.4685 (3) 0.0499 (9)
C13 0.9068 (5) 0.6885 (4) 0.5642 (3) 0.0590 (11)
H13 0.9596 0.6616 0.6174 0.071*
C14 0.7540 (5) 0.7371 (4) 0.5777 (3) 0.0593 (11)
H14 0.7017 0.7442 0.6404 0.071*
C15 0.6711 (4) 0.7778 (4) 0.4986 (3) 0.0486 (9)
C16 0.5117 (5) 0.8313 (4) 0.5007 (3) 0.0578 (11)
C17 0.4541 (5) 0.8647 (4) 0.4146 (3) 0.0638 (12)
H17 0.3488 0.9014 0.4149 0.077*
C18 0.5506 (5) 0.8449 (4) 0.3259 (3) 0.0548 (10)
C19 0.4055 (5) 0.8563 (5) 0.5956 (3) 0.0776 (14)
H19A 0.3138 0.9365 0.5854 0.116*
H19B 0.4552 0.8713 0.6423 0.116*
H19C 0.3802 0.7769 0.6192 0.116*
C20 0.4863 (5) 0.8810 (5) 0.2316 (3) 0.0796 (14)
H20A 0.4401 0.9799 0.2175 0.119*
H20B 0.4107 0.8427 0.2367 0.119*
H20C 0.5670 0.8432 0.1804 0.119*
C21 0.5865 (6) 0.7043 (6) 0.8635 (4) 0.1029 (18)
H21A 0.5910 0.6461 0.9241 0.154*
H21B 0.5687 0.6620 0.8152 0.154*
H21C 0.5047 0.7932 0.8712 0.154*
C22 0.4434 (6) 0.4976 (5) 0.6469 (5) 0.107 (2)
H22A 0.5042 0.5342 0.5971 0.161*
H22B 0.4866 0.3982 0.6509 0.161*
H22C 0.4416 0.5256 0.7080 0.161*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0519 (3) 0.0477 (3) 0.0353 (3) −0.0186 (2) −0.0107 (2) −0.0001 (2)
Cl1 0.0749 (7) 0.0444 (5) 0.0566 (6) −0.0238 (5) −0.0118 (5) −0.0039 (4)
Cl2 0.0498 (6) 0.0887 (8) 0.0553 (6) −0.0175 (6) −0.0085 (5) 0.0021 (6)
N1 0.0479 (18) 0.0481 (18) 0.0417 (18) −0.0220 (15) −0.0064 (14) −0.0046 (14)
N2 0.0510 (19) 0.0451 (17) 0.0352 (17) −0.0225 (15) −0.0070 (14) −0.0027 (13)
N3 0.100 (3) 0.064 (2) 0.056 (2) −0.043 (2) −0.032 (2) 0.0022 (17)
N4 0.0452 (19) 0.0450 (17) 0.0464 (19) −0.0159 (15) −0.0101 (15) −0.0016 (14)
N5 0.0458 (19) 0.0458 (17) 0.0383 (17) −0.0171 (15) −0.0091 (14) −0.0001 (13)
N6 0.053 (2) 0.103 (3) 0.051 (2) −0.023 (2) −0.0185 (17) −0.004 (2)
O1 0.066 (2) 0.104 (3) 0.074 (2) −0.010 (2) −0.0108 (17) −0.037 (2)
O2 0.066 (2) 0.135 (3) 0.067 (2) −0.046 (2) −0.0200 (18) 0.017 (2)
C1 0.042 (2) 0.046 (2) 0.040 (2) −0.0202 (17) 0.0012 (16) −0.0053 (17)
C2 0.053 (2) 0.055 (2) 0.041 (2) −0.027 (2) −0.0087 (18) −0.0019 (18)
C3 0.057 (3) 0.067 (3) 0.039 (2) −0.023 (2) −0.0149 (18) −0.0002 (19)
C4 0.057 (3) 0.048 (2) 0.047 (2) −0.015 (2) −0.0100 (19) 0.0091 (19)
C5 0.046 (2) 0.046 (2) 0.043 (2) −0.0183 (18) −0.0006 (17) −0.0012 (17)
C6 0.057 (2) 0.043 (2) 0.054 (3) −0.0209 (19) 0.002 (2) −0.0043 (18)
C7 0.067 (3) 0.052 (2) 0.062 (3) −0.029 (2) 0.003 (2) −0.019 (2)
C8 0.046 (2) 0.057 (2) 0.049 (2) −0.0237 (19) −0.0045 (18) −0.0111 (19)
C9 0.092 (4) 0.047 (2) 0.082 (3) −0.028 (2) −0.012 (3) 0.003 (2)
C10 0.078 (3) 0.088 (3) 0.067 (3) −0.040 (3) −0.017 (2) −0.019 (3)
C11 0.050 (2) 0.0359 (19) 0.042 (2) −0.0175 (17) −0.0092 (17) −0.0023 (16)
C12 0.059 (3) 0.049 (2) 0.044 (2) −0.022 (2) −0.0132 (19) −0.0022 (18)
C13 0.077 (3) 0.062 (3) 0.038 (2) −0.025 (2) −0.020 (2) 0.0027 (19)
C14 0.076 (3) 0.059 (3) 0.041 (2) −0.027 (2) −0.002 (2) −0.0054 (19)
C15 0.059 (3) 0.043 (2) 0.043 (2) −0.0211 (19) −0.0025 (19) −0.0063 (17)
C16 0.061 (3) 0.052 (2) 0.057 (3) −0.024 (2) 0.006 (2) −0.011 (2)
C17 0.043 (2) 0.065 (3) 0.077 (3) −0.016 (2) −0.003 (2) −0.012 (2)
C18 0.054 (3) 0.053 (2) 0.058 (3) −0.020 (2) −0.016 (2) −0.0018 (19)
C19 0.070 (3) 0.082 (3) 0.070 (3) −0.029 (3) 0.019 (2) −0.015 (3)
C20 0.066 (3) 0.093 (4) 0.076 (3) −0.025 (3) −0.033 (3) 0.010 (3)
C21 0.081 (4) 0.111 (5) 0.113 (5) −0.030 (3) −0.013 (3) −0.024 (4)
C22 0.083 (4) 0.075 (3) 0.168 (6) −0.034 (3) −0.036 (4) 0.009 (4)

Geometric parameters (Å, °)

Co1—N5 2.100 (3) C7—C8 1.406 (5)
Co1—N2 2.115 (3) C7—H7 0.9300
Co1—N1 2.312 (3) C8—C10 1.497 (5)
Co1—Cl2 2.3508 (13) C9—H9A 0.9600
Co1—Cl1 2.3936 (12) C9—H9B 0.9600
Co1—N4 2.417 (3) C9—H9C 0.9600
N1—C8 1.321 (5) C10—H10A 0.9600
N1—C1 1.345 (4) C10—H10B 0.9600
N2—C2 1.325 (4) C10—H10C 0.9600
N2—C1 1.356 (4) C11—C15 1.409 (5)
N3—C2 1.329 (5) C12—C13 1.428 (5)
N3—H3A 0.8600 C13—C14 1.339 (6)
N3—H3B 0.8600 C13—H13 0.9300
N4—C18 1.328 (5) C14—C15 1.408 (5)
N4—C11 1.346 (4) C14—H14 0.9300
N5—C12 1.339 (5) C15—C16 1.406 (5)
N5—C11 1.356 (4) C16—C17 1.368 (6)
N6—C12 1.327 (5) C16—C19 1.513 (5)
N6—H6A 0.8600 C17—C18 1.401 (5)
N6—H6B 0.8600 C17—H17 0.9300
O1—C21 1.391 (6) C18—C20 1.505 (6)
O1—H1 0.8200 C19—H19A 0.9600
O2—C22 1.379 (5) C19—H19B 0.9600
O2—H2 0.8200 C19—H19C 0.9600
C1—C5 1.403 (5) C20—H20A 0.9600
C2—C3 1.439 (5) C20—H20B 0.9600
C3—C4 1.341 (5) C20—H20C 0.9600
C3—H3 0.9300 C21—H21A 0.9600
C4—C5 1.425 (5) C21—H21B 0.9600
C4—H4 0.9300 C21—H21C 0.9600
C5—C6 1.403 (5) C22—H22A 0.9600
C6—C7 1.372 (5) C22—H22B 0.9600
C6—C9 1.507 (5) C22—H22C 0.9600
N5—Co1—N2 140.51 (11) C6—C9—H9B 109.5
N5—Co1—N1 94.22 (11) H9A—C9—H9B 109.5
N2—Co1—N1 60.40 (11) C6—C9—H9C 109.5
N5—Co1—Cl2 100.61 (9) H9A—C9—H9C 109.5
N2—Co1—Cl2 109.61 (8) H9B—C9—H9C 109.5
N1—Co1—Cl2 92.55 (8) C8—C10—H10A 109.5
N5—Co1—Cl1 103.03 (8) C8—C10—H10B 109.5
N2—Co1—Cl1 97.99 (8) H10A—C10—H10B 109.5
N1—Co1—Cl1 158.32 (8) C8—C10—H10C 109.5
Cl2—Co1—Cl1 96.99 (4) H10A—C10—H10C 109.5
N5—Co1—N4 58.85 (10) H10B—C10—H10C 109.5
N2—Co1—N4 88.79 (10) N4—C11—N5 111.7 (3)
N1—Co1—N4 88.66 (10) N4—C11—C15 124.9 (3)
Cl2—Co1—N4 159.45 (8) N5—C11—C15 123.4 (3)
Cl1—Co1—N4 89.14 (8) N6—C12—N5 118.9 (3)
C8—N1—C1 117.8 (3) N6—C12—C13 121.1 (4)
C8—N1—Co1 152.4 (3) N5—C12—C13 119.9 (4)
C1—N1—Co1 89.8 (2) C14—C13—C12 120.4 (4)
C2—N2—C1 119.8 (3) C14—C13—H13 119.8
C2—N2—Co1 141.9 (3) C12—C13—H13 119.8
C1—N2—Co1 98.2 (2) C13—C14—C15 121.1 (4)
C2—N3—H3A 120.0 C13—C14—H14 119.5
C2—N3—H3B 120.0 C15—C14—H14 119.5
H3A—N3—H3B 120.0 C16—C15—C14 127.9 (4)
C18—N4—C11 117.6 (3) C16—C15—C11 116.2 (4)
C18—N4—Co1 154.6 (3) C14—C15—C11 115.9 (4)
C11—N4—Co1 87.8 (2) C17—C16—C15 118.5 (4)
C12—N5—C11 119.3 (3) C17—C16—C19 120.5 (4)
C12—N5—Co1 139.0 (3) C15—C16—C19 120.9 (4)
C11—N5—Co1 101.6 (2) C16—C17—C18 121.3 (4)
C12—N6—H6A 120.0 C16—C17—H17 119.3
C12—N6—H6B 120.0 C18—C17—H17 119.3
H6A—N6—H6B 120.0 N4—C18—C17 121.5 (4)
C21—O1—H1 109.5 N4—C18—C20 117.6 (4)
C22—O2—H2 109.5 C17—C18—C20 120.9 (4)
N1—C1—N2 111.5 (3) C16—C19—H19A 109.5
N1—C1—C5 124.7 (3) C16—C19—H19B 109.5
N2—C1—C5 123.8 (3) H19A—C19—H19B 109.5
N2—C2—N3 119.8 (3) C16—C19—H19C 109.5
N2—C2—C3 119.9 (4) H19A—C19—H19C 109.5
N3—C2—C3 120.3 (3) H19B—C19—H19C 109.5
C4—C3—C2 120.2 (4) C18—C20—H20A 109.5
C4—C3—H3 119.9 C18—C20—H20B 109.5
C2—C3—H3 119.9 H20A—C20—H20B 109.5
C3—C4—C5 120.8 (3) C18—C20—H20C 109.5
C3—C4—H4 119.6 H20A—C20—H20C 109.5
C5—C4—H4 119.6 H20B—C20—H20C 109.5
C1—C5—C6 117.0 (3) O1—C21—H21A 109.5
C1—C5—C4 115.5 (3) O1—C21—H21B 109.5
C6—C5—C4 127.5 (3) H21A—C21—H21B 109.5
C7—C6—C5 117.7 (3) O1—C21—H21C 109.5
C7—C6—C9 120.5 (4) H21A—C21—H21C 109.5
C5—C6—C9 121.8 (4) H21B—C21—H21C 109.5
C6—C7—C8 121.6 (4) O2—C22—H22A 109.5
C6—C7—H7 119.2 O2—C22—H22B 109.5
C8—C7—H7 119.2 H22A—C22—H22B 109.5
N1—C8—C7 121.2 (4) O2—C22—H22C 109.5
N1—C8—C10 117.7 (4) H22A—C22—H22C 109.5
C7—C8—C10 121.1 (4) H22B—C22—H22C 109.5
C6—C9—H9A 109.5
N5—Co1—N1—C8 32.8 (5) N3—C2—C3—C4 179.3 (4)
N2—Co1—N1—C8 −179.2 (6) C2—C3—C4—C5 −0.4 (6)
Cl2—Co1—N1—C8 −68.0 (5) N1—C1—C5—C6 −0.3 (5)
Cl1—Co1—N1—C8 175.7 (4) N2—C1—C5—C6 −180.0 (3)
N4—Co1—N1—C8 91.4 (5) N1—C1—C5—C4 179.6 (3)
N5—Co1—N1—C1 −146.2 (2) N2—C1—C5—C4 −0.1 (5)
N2—Co1—N1—C1 1.79 (19) C3—C4—C5—C1 0.6 (5)
Cl2—Co1—N1—C1 112.95 (19) C3—C4—C5—C6 −179.6 (4)
Cl1—Co1—N1—C1 −3.3 (3) C1—C5—C6—C7 1.5 (5)
N4—Co1—N1—C1 −87.6 (2) C4—C5—C6—C7 −178.3 (4)
N5—Co1—N2—C2 −121.2 (4) C1—C5—C6—C9 −178.5 (3)
N1—Co1—N2—C2 −177.4 (4) C4—C5—C6—C9 1.7 (6)
Cl2—Co1—N2—C2 101.1 (4) C5—C6—C7—C8 −0.8 (6)
Cl1—Co1—N2—C2 0.7 (4) C9—C6—C7—C8 179.2 (4)
N4—Co1—N2—C2 −88.3 (4) C1—N1—C8—C7 2.6 (5)
N5—Co1—N2—C1 54.4 (3) Co1—N1—C8—C7 −176.3 (4)
N1—Co1—N2—C1 −1.79 (19) C1—N1—C8—C10 −176.5 (3)
Cl2—Co1—N2—C1 −83.3 (2) Co1—N1—C8—C10 4.6 (7)
Cl1—Co1—N2—C1 176.32 (19) C6—C7—C8—N1 −1.4 (6)
N4—Co1—N2—C1 87.4 (2) C6—C7—C8—C10 177.7 (4)
N5—Co1—N4—C18 178.9 (6) C18—N4—C11—N5 −179.3 (3)
N2—Co1—N4—C18 22.7 (6) Co1—N4—C11—N5 0.3 (3)
N1—Co1—N4—C18 83.1 (6) C18—N4—C11—C15 −1.1 (5)
Cl2—Co1—N4—C18 176.8 (5) Co1—N4—C11—C15 178.5 (3)
Cl1—Co1—N4—C18 −75.3 (6) C12—N5—C11—N4 178.6 (3)
N5—Co1—N4—C11 −0.21 (19) Co1—N5—C11—N4 −0.4 (3)
N2—Co1—N4—C11 −156.4 (2) C12—N5—C11—C15 0.4 (5)
N1—Co1—N4—C11 −96.0 (2) Co1—N5—C11—C15 −178.6 (3)
Cl2—Co1—N4—C11 −2.3 (3) C11—N5—C12—N6 −178.3 (3)
Cl1—Co1—N4—C11 105.60 (19) Co1—N5—C12—N6 0.1 (6)
N2—Co1—N5—C12 −138.9 (3) C11—N5—C12—C13 1.4 (5)
N1—Co1—N5—C12 −92.5 (4) Co1—N5—C12—C13 179.8 (3)
Cl2—Co1—N5—C12 0.9 (4) N6—C12—C13—C14 177.9 (4)
Cl1—Co1—N5—C12 100.7 (4) N5—C12—C13—C14 −1.8 (6)
N4—Co1—N5—C12 −178.4 (4) C12—C13—C14—C15 0.4 (6)
N2—Co1—N5—C11 39.7 (3) C13—C14—C15—C16 −179.6 (4)
N1—Co1—N5—C11 86.1 (2) C13—C14—C15—C11 1.2 (6)
Cl2—Co1—N5—C11 179.49 (19) N4—C11—C15—C16 1.0 (5)
Cl1—Co1—N5—C11 −80.7 (2) N5—C11—C15—C16 179.0 (3)
N4—Co1—N5—C11 0.22 (19) N4—C11—C15—C14 −179.6 (3)
C8—N1—C1—N2 177.9 (3) N5—C11—C15—C14 −1.7 (5)
Co1—N1—C1—N2 −2.6 (3) C14—C15—C16—C17 179.9 (4)
C8—N1—C1—C5 −1.8 (5) C11—C15—C16—C17 −0.9 (5)
Co1—N1—C1—C5 177.6 (3) C14—C15—C16—C19 2.1 (6)
C2—N2—C1—N1 179.8 (3) C11—C15—C16—C19 −178.7 (3)
Co1—N2—C1—N1 2.9 (3) C15—C16—C17—C18 0.9 (6)
C2—N2—C1—C5 −0.5 (5) C19—C16—C17—C18 178.7 (4)
Co1—N2—C1—C5 −177.4 (3) C11—N4—C18—C17 0.9 (5)
C1—N2—C2—N3 −178.9 (3) Co1—N4—C18—C17 −178.0 (4)
Co1—N2—C2—N3 −3.9 (6) C11—N4—C18—C20 −179.5 (4)
C1—N2—C2—C3 0.7 (5) Co1—N4—C18—C20 1.6 (8)
Co1—N2—C2—C3 175.7 (3) C16—C17—C18—N4 −0.9 (6)
N2—C2—C3—C4 −0.2 (6) C16—C17—C18—C20 179.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···Cl1i 0.82 2.35 3.162 (4) 172
O1—H1···Cl1ii 0.82 2.44 3.194 (4) 154
N6—H6B···O2iii 0.86 2.06 2.918 (4) 175
N6—H6A···Cl2 0.86 2.45 3.269 (4) 159
N3—H3B···O1iv 0.86 2.09 2.947 (4) 175
N3—H3A···Cl1 0.86 2.51 3.309 (3) 156
C22—H22B···C17i 0.96 2.91 3.789 (7) 154
C22—H22B···C18i 0.96 2.71 3.575 (6) 150
C4—H4···Cl2v 0.93 2.85 3.705 (4) 153
C7—H7···Cl1vi 0.93 2.87 3.757 (4) 160
C13—H13···Cl1ii 0.93 2.88 3.733 (4) 152

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x+1, y, z; (iv) x, y, z−1; (v) −x+2, −y+2, −z; (vi) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2083).

References

  1. Bayer, J. W. (1979). US Patent 4 169 092, 1–14.
  2. Bruker (1997). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Che, C. M., Wan, C. W., Hoa, K. Y. & Zhou, Z. Y. (2001). New J. Chem.25, 63–65.
  4. Gavrilova, A. L. & Bosnich, B. (2004). Chem. Rev.104, 349–383. [DOI] [PubMed]
  5. Harvey, B. G., Arif, A. M. & Ernst, R. D. (2004). Polyhedron, 23, 2725–2731.
  6. Jin, S. W., Liu, B. & Chen, W. Z. (2007). Chin. J. Struct. Chem.26, 287–290.
  7. Kukrek, A., Wang, D., Hou, Y. J., Zong, R. F. & Thummel, R. (2006). Inorg. Chem.45, 10131–10137. [DOI] [PubMed]
  8. Mintert, M. & Sheldrick, W. S. (1995a). Inorg. Chim. Acta, 236, 13–20.
  9. Mintert, M. & Sheldrick, W. S. (1995b). J. Chem. Soc. Dalton Trans. pp. 2663–2669.
  10. Oskui, B., Mintert, M. & Sheldrick, W. S. (1999). Inorg. Chim. Acta, 287, 72–81.
  11. Oskui, B. & Sheldrick, W. S. (1999). Eur. J. Inorg. Chem. pp. 1325–1328.
  12. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  13. Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  14. Sheldrick, G. M. (1997b). SHELXTL Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680706494X/zl2083sup1.cif

e-64-0m136-sup1.cif (25.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706494X/zl2083Isup2.hkl

e-64-0m136-Isup2.hkl (221.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES