Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 12;64(Pt 1):m167. doi: 10.1107/S1600536807065774

Doxofyllinium tetra­chloridoanti­monate(III) monohydrate

Wan Xing Wei a, Wen-Jie Feng b, Bo-Jiöng Zheng c, Ying Chen b, Zhi-Min Jin b,*
PMCID: PMC2915103  PMID: 21200515

Abstract

The title compound, (C11H14N4O4)[SbCl4]·H2O, comprises a protonated doxofyllinium cation [7-(1,3-dioxolan-2-ylmeth­yl)-1,3-dimethyl-2,6-dioxo-3,7-dihydro-1H-purin-9-ium], an [SbCl4] anion and a water mol­ecule linked by N—H⋯O and O—H⋯Cl hydrogen bonds: the [SbCl4] anions form centrosymmetric dimers via weak Sb⋯Cl inter­actions [Sb⋯Cl = 3.1159 (9) Å]. The geometrical arrangement in the crystal structure is characterized by slipped π–π stacking of the parallel purine ring systems, with an inter­planar separation of 3.32 Å.

Related literature

For related literature, see: Chen, Tu, Shu et al. (2007); Chen, Tu & Jin (2007);Feng et al. (2007); Franzone et al. (1981, 1989); Villani et al. (1997); Zhao & Li (2001).graphic file with name e-64-0m167-scheme1.jpg

Experimental

Crystal data

  • (C11H14N4O4)[SbCl4]·H2O

  • M r = 548.85

  • Triclinic, Inline graphic

  • a = 8.9783 (5) Å

  • b = 10.4727 (5) Å

  • c = 11.0357 (4) Å

  • α = 68.7550 (10)°

  • β = 82.671 (2)°

  • γ = 88.228 (2)°

  • V = 959.10 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.03 mm−1

  • T = 153 (2) K

  • 0.33 × 0.28 × 0.27 mm

Data collection

  • Bruker APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.459, T max = 0.486 (expected range = 0.547–0.579)

  • 9490 measured reflections

  • 4399 independent reflections

  • 4151 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.097

  • S = 1.05

  • 4399 reflections

  • 236 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.40 e Å−3

  • Δρmin = −2.97 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807065774/gg2051sup1.cif

e-64-0m167-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065774/gg2051Isup2.hkl

e-64-0m167-Isup2.hkl (209.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5 0.92 (4) 1.75 (4) 2.663 (4) 172 (4)
O5—H5C⋯Cl1 0.81 (3) 2.65 (2) 3.332 (3) 142 (2)
O5—H5D⋯Cl1i 0.81 (3) 2.41 (2) 3.205 (3) 166 (5)
C3—H3A⋯O1 0.97 2.45 3.145 (8) 128
C7—H7⋯Cl3ii 0.93 2.56 3.432 (3) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Doxofylline [7-(1,3-dioxolan-2-ylmethyl)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione] is a therapeutic agent with anti-asthmatic (Franzone et al., 1989), anti-inflammatory activities (Zhao et al., 2001) and a bronchodilating effect on smooth muscle (Franzone et al., 1981; Villani et al., 1997). So far several organic compounds containing doxofylline have been synthesized (Chen, Tu, Shu et al.,2007); Chen, Tu & Jin, 2007; Feng et al., 2007), but the doxofylline complex containing metal has not been reported. All of the above studies provide important references to futher research into doxofylline. Herein we present here the structure of the title compound (Scheme 1), (I).

As depicted in Fig. 1, the compound (I) is comprised of a doxofylline cation, a SbCl4 anion and a water molecule. The N1 of doxofylline is protonated and links to the water molecule by N1—H1···O5 hydrogen bond, and the water molecule links the SbCl4 anion by O5—H5C···Cl interactions. The dihedral angle between the plane of the purine ring and the approximate plane through C4/O3/C6/O4 is 68.5°. The pure compound is 8.42° (Chen, Tu, Shu et al.,2007); Chen, Tu & Jin, 2007). In the purine ring, the bond length of N4—C11 [1.392 (3) Å] bond is somewhat longer than the corresponding N—C [1.374 (4) Å] bond length in the Chen's case (Chen et al., 2007).

The symmetrically related SbCl4 link into dimers via coordinated bonds of Sb1—Cl4 (-x + 1, -y + 2, -z + 2) [3.1159 (9) Å] (Fig. 2), which plays an important role in the formation of the crystal. In addition, there exists slipped π···π stacking between symmetrically related pyridines rings at (-x + 2, -y + 1, -z + 1), with a centroid to centroid distance equal to be 3.662 (6) Å. With intermolecular hydrogen bonds listed in Table 1, the stacking interactons further stabilize the crystal structure (Fig. 3).

Experimental

Antimony trichloride, hydrochloride acid and doxofylline in a 1:1:1 molar ratio were mixed and dissolved in sufficient acetone by heating to a temperature at which a clear solution resulted. Crystals of (I) were formed by gradual evaporation of acetone over a period of three days at 298 K.

Refinement

H atoms attaching to N atoms were deduced from difference Fourier maps, and incorporated in refinement freely. The water H atoms were located tentatively in difference Fourier maps and were refined with the O—H and H···H distances restrained to 0.82 (2) and 1.39 (2) Å. Others were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.93 (C7—H7), 0.96 (methyl), 0.97 (methylene) and 0.98Å (methine), with Uiso(H) = 1.2–1.5 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with 30% probability displacement ellipsoids is shown. Hydrogn bonds are illustrated as dashed lines.

Fig. 2.

Fig. 2.

The dimer of SbCl4 in the crystal lattice. Atoms which are not labeled are obtained by symmetry operation of (-x + 1, -y + 2, -z + 2). Coordinated bonds of Sb1—Cl4 (-x + 1, -y + 2, -z + 2) and Cl4—Sb1 (-x + 1, -y + 2, -z + 2) are illustrated by dashed lines.

Fig. 3.

Fig. 3.

The packing diagram of (I) viewed down along the c axis. Hydrogen bonds are illustrated by dashed lines.

Crystal data

(C11H14N4O4)[SbCl4]·H2O Z = 2
Mr = 548.85 F000 = 540
Triclinic, P1 Dx = 1.901 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 8.9783 (5) Å Cell parameters from 4733 reflections
b = 10.4727 (5) Å θ = 2.1–26.9º
c = 11.0357 (4) Å µ = 2.03 mm1
α = 68.7550 (10)º T = 153 (2) K
β = 82.671 (2)º Block, colourless
γ = 88.228 (2)º 0.33 × 0.28 × 0.27 mm
V = 959.10 (8) Å3

Data collection

Bruker APEX diffractometer 4399 independent reflections
Radiation source: fine-focus sealed tube 4151 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.046
T = 293(2) K θmax = 27.5º
φ and ω scan θmin = 3.1º
Absorption correction: multi-scan(SADABS; Bruker, 2000) h = −11→11
Tmin = 0.459, Tmax = 0.486 k = −13→13
9490 measured reflections l = −14→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097   w = 1/[σ2(Fo2) + (0.0545P)2 + 0.741P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
4399 reflections Δρmax = 1.40 e Å3
236 parameters Δρmin = −2.97 e Å3
3 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sb1 0.603006 (19) 0.947081 (18) 0.845084 (16) 0.01708 (9)
Cl1 0.50253 (10) 0.84549 (9) 0.69342 (9) 0.03132 (19)
Cl2 0.85111 (8) 0.95551 (8) 0.72752 (7) 0.02636 (17)
Cl3 0.70926 (9) 1.07637 (8) 0.98807 (8) 0.02720 (17)
Cl4 0.53886 (10) 1.16845 (8) 0.70074 (8) 0.02833 (18)
O3 0.7285 (2) 0.7066 (2) 0.0265 (2) 0.0210 (4)
N4 1.0810 (3) 0.6651 (3) 0.4722 (2) 0.0167 (5)
N3 1.2424 (3) 0.5255 (2) 0.3864 (2) 0.0162 (5)
C11 1.1991 (3) 0.5734 (3) 0.4877 (3) 0.0173 (5)
C8 1.0212 (3) 0.7064 (3) 0.3567 (3) 0.0153 (5)
C1 1.1882 (3) 0.5670 (3) 0.2638 (3) 0.0153 (5)
C2 1.0676 (3) 0.6614 (3) 0.2569 (3) 0.0149 (5)
O1 1.2388 (2) 0.5233 (2) 0.1794 (2) 0.0226 (5)
N1 0.9061 (3) 0.7955 (3) 0.3204 (2) 0.0182 (5)
N2 0.9814 (3) 0.7279 (3) 0.1570 (2) 0.0164 (5)
O2 1.2588 (2) 0.5340 (2) 0.5875 (2) 0.0247 (5)
C7 0.8856 (3) 0.8068 (3) 0.1984 (3) 0.0199 (6)
H7 0.8145 0.8619 0.1501 0.024*
C12 1.3671 (3) 0.4282 (3) 0.4072 (3) 0.0233 (6)
H12A 1.3891 0.4014 0.3325 0.035*
H12B 1.3390 0.3488 0.4840 0.035*
H12C 1.4544 0.4711 0.4188 0.035*
O4 0.8543 (2) 0.5081 (2) 0.1080 (2) 0.0221 (4)
C3 0.9963 (3) 0.7182 (3) 0.0266 (3) 0.0186 (6)
H3A 1.0894 0.6729 0.0131 0.022*
H3B 1.0012 0.8097 −0.0395 0.022*
C4 0.8666 (3) 0.6396 (3) 0.0103 (3) 0.0170 (5)
H4 0.8816 0.6326 −0.0766 0.020*
C5 0.6971 (4) 0.4720 (3) 0.1295 (3) 0.0254 (6)
H5A 0.6695 0.4048 0.2166 0.030*
H5B 0.6713 0.4361 0.0652 0.030*
C6 0.6219 (4) 0.6067 (4) 0.1140 (4) 0.0362 (8)
H6A 0.5284 0.6123 0.0770 0.043*
H6B 0.6014 0.6188 0.1975 0.043*
C10 1.0375 (4) 0.7258 (3) 0.5723 (3) 0.0230 (6)
H10A 1.0918 0.6828 0.6458 0.035*
H10B 0.9316 0.7121 0.6004 0.035*
H10C 1.0607 0.8222 0.5359 0.035*
O5 0.7621 (3) 0.9581 (3) 0.4328 (2) 0.0308 (5)
H1 0.857 (4) 0.845 (4) 0.367 (4) 0.024 (9)*
H5C 0.731 (4) 0.907 (3) 0.5067 (18) 0.029*
H5D 0.699 (3) 1.004 (3) 0.390 (3) 0.029*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sb1 0.01524 (12) 0.01761 (13) 0.01647 (12) 0.00463 (8) −0.00456 (8) −0.00337 (9)
Cl1 0.0308 (4) 0.0267 (4) 0.0434 (5) 0.0035 (3) −0.0099 (3) −0.0195 (4)
Cl2 0.0185 (3) 0.0339 (4) 0.0231 (3) 0.0024 (3) −0.0001 (3) −0.0070 (3)
Cl3 0.0209 (4) 0.0285 (4) 0.0289 (4) −0.0004 (3) −0.0088 (3) −0.0045 (3)
Cl4 0.0357 (4) 0.0188 (4) 0.0285 (4) 0.0071 (3) −0.0144 (3) −0.0031 (3)
O3 0.0136 (9) 0.0262 (11) 0.0211 (10) 0.0040 (8) −0.0060 (8) −0.0051 (9)
N4 0.0172 (11) 0.0215 (12) 0.0123 (10) 0.0048 (9) −0.0057 (9) −0.0063 (9)
N3 0.0149 (11) 0.0191 (12) 0.0146 (10) 0.0056 (9) −0.0061 (9) −0.0052 (9)
C11 0.0158 (12) 0.0212 (14) 0.0148 (12) 0.0024 (10) −0.0044 (10) −0.0057 (11)
C8 0.0141 (12) 0.0180 (13) 0.0141 (12) 0.0029 (10) −0.0055 (10) −0.0050 (10)
C1 0.0124 (12) 0.0190 (13) 0.0140 (12) −0.0004 (10) −0.0038 (10) −0.0048 (11)
C2 0.0133 (12) 0.0200 (13) 0.0115 (11) 0.0023 (10) −0.0060 (9) −0.0042 (10)
O1 0.0219 (11) 0.0312 (12) 0.0189 (10) 0.0091 (9) −0.0056 (8) −0.0139 (9)
N1 0.0171 (11) 0.0205 (12) 0.0188 (11) 0.0067 (9) −0.0069 (9) −0.0082 (10)
N2 0.0151 (11) 0.0206 (12) 0.0137 (10) 0.0026 (9) −0.0075 (9) −0.0047 (9)
O2 0.0234 (11) 0.0353 (13) 0.0155 (9) 0.0084 (9) −0.0107 (8) −0.0070 (9)
C7 0.0168 (13) 0.0237 (15) 0.0215 (13) 0.0053 (11) −0.0084 (11) −0.0093 (12)
C12 0.0209 (14) 0.0281 (16) 0.0201 (13) 0.0135 (12) −0.0081 (11) −0.0068 (12)
O4 0.0227 (11) 0.0215 (11) 0.0203 (10) 0.0024 (8) −0.0035 (8) −0.0052 (9)
C3 0.0171 (13) 0.0276 (15) 0.0117 (12) 0.0020 (11) −0.0046 (10) −0.0071 (11)
C4 0.0154 (13) 0.0218 (14) 0.0149 (12) 0.0049 (11) −0.0056 (10) −0.0071 (11)
C5 0.0277 (16) 0.0304 (17) 0.0179 (13) −0.0070 (13) 0.0006 (12) −0.0091 (13)
C6 0.0223 (16) 0.037 (2) 0.0401 (19) −0.0003 (14) −0.0018 (14) −0.0035 (16)
C10 0.0269 (15) 0.0301 (17) 0.0159 (13) 0.0065 (12) −0.0065 (11) −0.0122 (12)
O5 0.0291 (12) 0.0417 (15) 0.0262 (11) 0.0164 (11) −0.0078 (9) −0.0176 (11)

Geometric parameters (Å, °)

Sb1—Cl4 2.3915 (7) N2—C3 1.468 (3)
Sb1—Cl2 2.4176 (7) C7—H7 0.9300
Sb1—Cl1 2.5460 (9) C12—H12A 0.9600
Sb1—Cl3 2.6917 (9) C12—H12B 0.9600
O3—C6 1.428 (4) C12—H12C 0.9600
O3—C4 1.429 (3) O4—C4 1.405 (3)
N4—C8 1.364 (3) O4—C5 1.440 (4)
N4—C11 1.392 (3) C3—C4 1.512 (4)
N4—C10 1.470 (4) C3—H3A 0.9700
N3—C11 1.392 (4) C3—H3B 0.9700
N3—C1 1.409 (3) C4—H4 0.9800
N3—C12 1.473 (3) C5—C6 1.507 (5)
C11—O2 1.216 (4) C5—H5A 0.9700
C8—C2 1.362 (4) C5—H5B 0.9700
C8—N1 1.369 (3) C6—H6A 0.9700
C1—O1 1.213 (3) C6—H6B 0.9700
C1—C2 1.434 (4) C10—H10A 0.9600
C2—N2 1.388 (3) C10—H10B 0.9600
N1—C7 1.344 (4) C10—H10C 0.9600
N1—H1 0.92 (4) O5—H5C 0.81 (3)
N2—C7 1.327 (4) O5—H5D 0.81 (3)
Cl4—Sb1—Cl2 93.49 (3) H12A—C12—H12B 109.5
Cl4—Sb1—Cl1 88.23 (3) N3—C12—H12C 109.5
Cl2—Sb1—Cl1 88.95 (3) H12A—C12—H12C 109.5
Cl4—Sb1—Cl3 86.84 (3) H12B—C12—H12C 109.5
Cl2—Sb1—Cl3 90.02 (3) C4—O4—C5 105.2 (2)
Cl1—Sb1—Cl3 174.90 (3) N2—C3—C4 112.1 (2)
C6—O3—C4 108.5 (2) N2—C3—H3A 109.2
C8—N4—C11 117.8 (2) C4—C3—H3A 109.2
C8—N4—C10 122.3 (2) N2—C3—H3B 109.2
C11—N4—C10 119.4 (2) C4—C3—H3B 109.2
C11—N3—C1 127.4 (2) H3A—C3—H3B 107.9
C11—N3—C12 115.5 (2) O4—C4—O3 106.6 (2)
C1—N3—C12 116.9 (2) O4—C4—C3 110.1 (2)
O2—C11—N3 121.5 (3) O3—C4—C3 110.1 (2)
O2—C11—N4 121.2 (3) O4—C4—H4 110.0
N3—C11—N4 117.3 (2) O3—C4—H4 110.0
C2—C8—N4 124.1 (2) C3—C4—H4 110.0
C2—C8—N1 108.2 (2) O4—C5—C6 102.8 (3)
N4—C8—N1 127.7 (2) O4—C5—H5A 111.2
O1—C1—N3 122.2 (2) C6—C5—H5A 111.2
O1—C1—C2 126.7 (3) O4—C5—H5B 111.2
N3—C1—C2 111.1 (2) C6—C5—H5B 111.2
C8—C2—N2 106.7 (2) H5A—C5—H5B 109.1
C8—C2—C1 122.1 (2) O3—C6—C5 103.9 (3)
N2—C2—C1 131.2 (2) O3—C6—H6A 111.0
C7—N1—C8 107.2 (2) C5—C6—H6A 111.0
C7—N1—H1 125 (2) O3—C6—H6B 111.0
C8—N1—H1 127 (2) C5—C6—H6B 111.0
C7—N2—C2 107.7 (2) H6A—C6—H6B 109.0
C7—N2—C3 125.6 (2) N4—C10—H10A 109.5
C2—N2—C3 126.7 (2) N4—C10—H10B 109.5
N2—C7—N1 110.1 (2) H10A—C10—H10B 109.5
N2—C7—H7 125.0 N4—C10—H10C 109.5
N1—C7—H7 125.0 H10A—C10—H10C 109.5
N3—C12—H12A 109.5 H10B—C10—H10C 109.5
N3—C12—H12B 109.5 H5C—O5—H5D 116.0 (19)
C1—N3—C11—O2 −176.7 (3) O1—C1—C2—N2 −1.4 (5)
C12—N3—C11—O2 −1.7 (4) N3—C1—C2—N2 −180.0 (3)
C1—N3—C11—N4 5.3 (4) C2—C8—N1—C7 −1.4 (3)
C12—N3—C11—N4 −179.7 (3) N4—C8—N1—C7 179.5 (3)
C8—N4—C11—O2 179.0 (3) C8—C2—N2—C7 −1.3 (3)
C10—N4—C11—O2 6.1 (4) C1—C2—N2—C7 −178.8 (3)
C8—N4—C11—N3 −3.1 (4) C8—C2—N2—C3 176.4 (3)
C10—N4—C11—N3 −175.9 (3) C1—C2—N2—C3 −1.1 (5)
C11—N4—C8—C2 1.4 (4) C2—N2—C7—N1 0.5 (3)
C10—N4—C8—C2 174.1 (3) C3—N2—C7—N1 −177.3 (3)
C11—N4—C8—N1 −179.7 (3) C8—N1—C7—N2 0.6 (3)
C10—N4—C8—N1 −7.0 (5) C7—N2—C3—C4 −73.4 (4)
C11—N3—C1—O1 176.4 (3) C2—N2—C3—C4 109.3 (3)
C12—N3—C1—O1 1.4 (4) C5—O4—C4—O3 31.0 (3)
C11—N3—C1—C2 −5.0 (4) C5—O4—C4—C3 150.4 (2)
C12—N3—C1—C2 −180.0 (3) C6—O3—C4—O4 −12.6 (3)
N4—C8—C2—N2 −179.2 (3) C6—O3—C4—C3 −132.0 (3)
N1—C8—C2—N2 1.7 (3) N2—C3—C4—O4 −56.9 (3)
N4—C8—C2—C1 −1.4 (5) N2—C3—C4—O3 60.4 (3)
N1—C8—C2—C1 179.5 (3) C4—O4—C5—C6 −36.3 (3)
O1—C1—C2—C8 −178.6 (3) C4—O3—C6—C5 −9.9 (4)
N3—C1—C2—C8 2.9 (4) O4—C5—C6—O3 28.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O5 0.92 (4) 1.75 (4) 2.663 (4) 172 (4)
O5—H5C···Cl1 0.81 (3) 2.65 (2) 3.332 (3) 142 (2)
O5—H5D···Cl1i 0.81 (3) 2.41 (2) 3.205 (3) 166 (5)
C3—H3A···O1 0.97 2.45 3.145 (8) 128
C7—H7···Cl3ii 0.93 2.56 3.432 (3) 157

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2051).

References

  1. Bruker (2000). SMART (Version 5.618), SADABS (Version 2.05), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chen, Z.-H., Tu, B. & Jin, Z.-M. (2007). Acta Cryst. E63, o2676–o2677.
  3. Chen, H.-X., Tu, B., Shu, Z., Ma, X.-J. & Jin, Z.-M. (2007). Acta Cryst. E63, o726–o727.
  4. Feng, W.-J., Ma, X.-J., Shu, Z. & Jin, Z.-M. (2007). Acta Cryst. E63, o3609.
  5. Franzone, J. S., Cirillo, R. & Biffignandi, P. (1989). Eur. J. Pharmacol.165, 269–277. [DOI] [PubMed]
  6. Franzone, J. S., Reboani, C. & Fonzo, D. (1981). Farmacol. Sci.36, 201–219. [PubMed]
  7. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  8. Villani, F., De Maria, P., Ronchi, E. & Galimberti, M. (1997). Int. J. Clin. Pharmacol. Ther.35, 107–111. [PubMed]
  9. Zhao, J. J. & Li, L. (2001). J. N. Bethune Univ. Med. Sci.27, 646–676.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807065774/gg2051sup1.cif

e-64-0m167-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065774/gg2051Isup2.hkl

e-64-0m167-Isup2.hkl (209.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES