Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 12;64(Pt 1):m176. doi: 10.1107/S1600536807065555

Poly[bis­[μ-1-cyclo­propyl-6-fluoro-4-oxido-7-(1-piperazin­yl)-1,4-dihydro­quinoline-3-carboxyl­ato]nickel(II)]

Zhe An a, Lan-Ru Liu a, Ya-Qin Liu b,*
PMCID: PMC2915111  PMID: 21200524

Abstract

In the title compound, [Ni(C17H17FN3O3)2]n, the NiII atom exists in a distorted trans-NiN2O4 octa­hedral geometry defined by two monodentate N-bonded and two bidentate O,O-bonded 1-cyclo­propyl-6-fluoro-4-oxido-7-(1-piperazin­yl)-1,4-dihydro­quinoline-3-carboxyl­ate (ciprofloxacinium) monoanions. The extended two-dimensional structure is a square grid. The Ni atom lies on a center of inversion.

Related literature

For the manganese, zinc and copper complexes of the ciprofloxacinium (cf) anion, see: Xiao et al. (2005); An et al. (2007). For background on the medicinal uses of Hcf, see: Mizuki et al. (1996).graphic file with name e-64-0m176-scheme1.jpg

Experimental

Crystal data

  • [Ni(C17H17FN3O3)2]

  • M r = 719.38

  • Monoclinic, Inline graphic

  • a = 5.9999 (6) Å

  • b = 21.437 (2) Å

  • c = 13.2287 (14) Å

  • β = 101.886 (2)°

  • V = 1665.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 295 (2) K

  • 0.34 × 0.26 × 0.18 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.810, T max = 0.892

  • 8098 measured reflections

  • 2890 independent reflections

  • 2466 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.173

  • S = 1.00

  • 2890 reflections

  • 226 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.92 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807065555/cs2060sup1.cif

e-64-0m176-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065555/cs2060Isup2.hkl

e-64-0m176-Isup2.hkl (141.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O2i 0.861 (10) 2.48 (4) 3.184 (4) 139 (5)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge financial support by the Science Foundation of Qiqihar Medical University (grant No. 20044405).

supplementary crystallographic information

Comment

Ciprofloxacin (1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo -7-(1-piperazinyl)-3-quinoline carboxylic acid, H-cf) is a member of a class of quinolones that is used to treat infections (Mizuki et al., 1996). Manganese(II), zinc(II) and copper(II) derivatives of H-cf have been reported (Xiao et al., 2005; An et al., 2007). The title compound nickel(II) derivative is a two-dimensional coordination polymer in which the anion acts in a bridging mode (Fig. 1).

The Ni(II) atom is coordinated by four oxygen atoms and two N atoms from four cf ligands (two monodentate-N and two O,O-bidentate) to form a square grid propagating approximately in the bc plane (Fig. 2).

Experimental

A mixture of Ni(NO3)2.6H2O (0.07 g, 0.25 mmol), ciprofloxacin hydrochloride (0.19 g, 0.5 mmol), and water (12 ml) was stirred for 30 min in air. The mixture was then transferred to a 23 ml Teflon-lined hydrothermal bomb. The bomb was kept at 433 K for 72 h under autogenous pressure. Green single crystals of the title compound suitable for X-ray analysis were obtained from the reaction mixture after cooling. Green blocks of (I) with a yield of 21%. Anal. Calc. for C34H34F2N6O6Ni: C 56.77, H 4.73, N 11.69%, O 13.36; Found: C 56.73, H 4.78, N 11.64%, O 13.40.

Refinement

The carbon-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located in a difference map and refined with a distance restraint of 0.86 (1) Å and the constraint Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, extended to show the Ni coordination, showing 50% displacement ellipsoids and the atom-numbering scheme [symmetry codes: (i)x, y, z; (ii)-x, y + 1/2, -z + 1/2; (iii)-x, -y, -z; (iv)x, -y - 1/2, z - 1/2]

Fig. 2.

Fig. 2.

A view of part of a two-dimensional polymeric sheet in the crystal of the title compound showing the square-grid connectivity.

Crystal data

[Ni(C17H17FN3O3)2] F000 = 748
Mr = 719.38 Dx = 1.435 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
a = 5.9999 (6) Å Cell parameters from 2967 reflections
b = 21.437 (2) Å θ = 2.5–27.3º
c = 13.2287 (14) Å µ = 0.65 mm1
β = 101.886 (2)º T = 295 (2) K
V = 1665.0 (3) Å3 Block, green
Z = 2 0.34 × 0.26 × 0.18 mm

Data collection

Bruker SMART CCD diffractometer 2890 independent reflections
Radiation source: fine-focus sealed tube 2466 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.030
T = 295(2) K θmax = 25.1º
ω scans θmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −6→7
Tmin = 0.810, Tmax = 0.892 k = −25→21
8098 measured reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.173   w = 1/[σ2(Fo2) + (0.1083P)2 + 3.3784P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.008
2890 reflections Δρmax = 1.92 e Å3
226 parameters Δρmin = −0.43 e Å3
1 restraint Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.0000 0.5000 0.5000 0.0191 (2)
F1 0.7020 (4) 0.74254 (11) 0.67877 (19) 0.0407 (6)
O1 −0.2122 (4) 0.48858 (11) 0.6010 (2) 0.0254 (6)
O2 −0.3432 (6) 0.49499 (14) 0.7453 (3) 0.0489 (9)
O3 0.1687 (4) 0.56702 (11) 0.59535 (18) 0.0246 (5)
N1 0.0052 (5) 0.65173 (14) 0.8485 (2) 0.0275 (7)
N2 0.5762 (5) 0.81201 (14) 0.8367 (2) 0.0266 (7)
N3 0.7552 (5) 0.93356 (13) 0.9140 (2) 0.0244 (6)
C1 −0.2146 (6) 0.51226 (17) 0.6881 (3) 0.0261 (8)
C2 −0.0603 (6) 0.56768 (15) 0.7245 (3) 0.0236 (7)
C3 −0.1042 (6) 0.59953 (17) 0.8074 (3) 0.0274 (8)
H3 −0.2188 0.5841 0.8383 0.033*
C4 0.1761 (6) 0.67679 (16) 0.8044 (3) 0.0242 (7)
C5 0.2833 (6) 0.73317 (17) 0.8400 (3) 0.0264 (8)
H5 0.2370 0.7542 0.8937 0.032*
C6 0.4567 (6) 0.75847 (16) 0.7975 (3) 0.0243 (7)
C7 0.5192 (6) 0.72338 (17) 0.7174 (3) 0.0253 (8)
C8 0.4147 (6) 0.67009 (16) 0.6793 (3) 0.0251 (7)
H8 0.4605 0.6498 0.6249 0.030*
C9 0.2363 (6) 0.64486 (16) 0.7215 (3) 0.0232 (7)
C10 0.1164 (6) 0.58960 (15) 0.6756 (3) 0.0216 (7)
C11 −0.0674 (7) 0.6856 (2) 0.9317 (3) 0.0345 (9)
H11 −0.1386 0.7262 0.9124 0.041*
C12 0.0698 (10) 0.6814 (3) 1.0393 (4) 0.0550 (13)
H12A 0.0834 0.7187 1.0817 0.066*
H12B 0.2035 0.6548 1.0512 0.066*
C13 −0.1585 (10) 0.6507 (3) 1.0120 (4) 0.0632 (16)
H13A −0.1629 0.6055 1.0075 0.076*
H13B −0.2829 0.6694 1.0379 0.076*
C14 0.6114 (8) 0.86219 (18) 0.7651 (3) 0.0360 (9)
H14A 0.4703 0.8850 0.7425 0.043*
H14B 0.6543 0.8441 0.7047 0.043*
C15 0.7969 (7) 0.90671 (18) 0.8177 (3) 0.0347 (9)
H15A 0.9409 0.8846 0.8324 0.042*
H15B 0.8105 0.9403 0.7703 0.042*
C16 0.7067 (9) 0.8829 (2) 0.9801 (3) 0.0464 (12)
H16A 0.6634 0.9008 1.0406 0.056*
H16B 0.8452 0.8591 1.0035 0.056*
C17 0.5196 (8) 0.8385 (2) 0.9285 (3) 0.0458 (12)
H17A 0.5018 0.8054 0.9762 0.055*
H17B 0.3764 0.8609 0.9104 0.055*
H3N 0.641 (6) 0.9588 (19) 0.902 (4) 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0266 (4) 0.0117 (4) 0.0186 (4) 0.0001 (2) 0.0035 (3) −0.0027 (2)
F1 0.0451 (13) 0.0358 (13) 0.0491 (14) −0.0169 (10) 0.0284 (11) −0.0146 (11)
O1 0.0311 (13) 0.0194 (12) 0.0252 (13) −0.0048 (10) 0.0042 (10) −0.0037 (10)
O2 0.067 (2) 0.0467 (19) 0.0417 (18) −0.0339 (15) 0.0306 (17) −0.0182 (13)
O3 0.0307 (13) 0.0206 (12) 0.0240 (12) −0.0021 (10) 0.0090 (10) −0.0075 (10)
N1 0.0331 (16) 0.0258 (16) 0.0263 (16) −0.0096 (12) 0.0123 (13) −0.0114 (12)
N2 0.0389 (17) 0.0178 (14) 0.0245 (15) −0.0098 (12) 0.0101 (13) −0.0055 (12)
N3 0.0304 (16) 0.0155 (14) 0.0268 (15) −0.0031 (11) 0.0044 (12) −0.0007 (12)
C1 0.0301 (19) 0.0209 (17) 0.0271 (19) −0.0049 (14) 0.0055 (15) −0.0005 (14)
C2 0.0299 (18) 0.0164 (17) 0.0236 (17) −0.0038 (13) 0.0040 (14) −0.0030 (13)
C3 0.0317 (18) 0.0248 (18) 0.0267 (18) −0.0058 (14) 0.0081 (15) −0.0016 (15)
C4 0.0285 (18) 0.0204 (17) 0.0246 (18) −0.0042 (14) 0.0077 (14) −0.0044 (14)
C5 0.0320 (19) 0.0224 (17) 0.0260 (18) −0.0060 (15) 0.0088 (15) −0.0087 (14)
C6 0.0286 (18) 0.0185 (17) 0.0251 (18) −0.0042 (14) 0.0044 (14) −0.0041 (14)
C7 0.0291 (18) 0.0239 (18) 0.0253 (18) −0.0054 (14) 0.0108 (14) −0.0036 (14)
C8 0.0312 (18) 0.0216 (17) 0.0241 (17) −0.0019 (14) 0.0092 (14) −0.0039 (14)
C9 0.0257 (17) 0.0217 (17) 0.0227 (17) −0.0029 (13) 0.0058 (13) −0.0039 (13)
C10 0.0261 (17) 0.0156 (16) 0.0221 (17) 0.0016 (13) 0.0024 (13) −0.0002 (13)
C11 0.040 (2) 0.033 (2) 0.034 (2) −0.0064 (17) 0.0166 (17) −0.0116 (17)
C12 0.078 (3) 0.056 (3) 0.030 (2) −0.009 (3) 0.009 (2) −0.014 (2)
C13 0.094 (4) 0.063 (3) 0.046 (3) −0.029 (3) 0.045 (3) −0.017 (2)
C14 0.058 (3) 0.0240 (19) 0.0253 (19) −0.0120 (17) 0.0057 (18) −0.0016 (15)
C15 0.050 (2) 0.029 (2) 0.029 (2) −0.0149 (17) 0.0159 (17) −0.0059 (16)
C16 0.074 (3) 0.039 (2) 0.029 (2) −0.035 (2) 0.018 (2) −0.0119 (18)
C17 0.064 (3) 0.041 (2) 0.040 (2) −0.032 (2) 0.028 (2) −0.0232 (19)

Geometric parameters (Å, °)

Ni1—O3 2.038 (2) C5—C6 1.391 (5)
Ni1—O3i 2.038 (2) C5—H5 0.9300
Ni1—O1i 2.041 (3) C6—C7 1.411 (5)
Ni1—O1 2.041 (3) C7—C8 1.350 (5)
Ni1—N3ii 2.189 (3) C8—C9 1.412 (5)
Ni1—N3iii 2.189 (3) C8—H8 0.9300
F1—C7 1.365 (4) C9—C10 1.453 (5)
O1—C1 1.261 (5) C11—C13 1.491 (6)
O2—C1 1.243 (5) C11—C12 1.492 (7)
O3—C10 1.264 (4) C11—H11 0.9800
N1—C3 1.353 (5) C12—C13 1.495 (7)
N1—C4 1.387 (5) C12—H12A 0.9700
N1—C11 1.459 (5) C12—H12B 0.9700
N2—C6 1.396 (4) C13—H13A 0.9700
N2—C17 1.443 (5) C13—H13B 0.9700
N2—C14 1.476 (5) C14—C15 1.521 (5)
N3—C16 1.461 (5) C14—H14A 0.9700
N3—C15 1.466 (5) C14—H14B 0.9700
N3—Ni1iv 2.189 (3) C15—H15A 0.9700
N3—H3N 0.861 (10) C15—H15B 0.9700
C1—C2 1.522 (5) C16—C17 1.521 (6)
C2—C3 1.363 (5) C16—H16A 0.9700
C2—C10 1.430 (5) C16—H16B 0.9700
C3—H3 0.9300 C17—H17A 0.9700
C4—C5 1.404 (5) C17—H17B 0.9700
C4—C9 1.402 (5)
O3—Ni1—O3i 180.00 (9) C7—C8—H8 119.7
O3—Ni1—O1i 91.34 (10) C9—C8—H8 119.7
O3i—Ni1—O1i 88.66 (10) C4—C9—C8 117.4 (3)
O3—Ni1—O1 88.66 (10) C4—C9—C10 122.7 (3)
O3i—Ni1—O1 91.34 (10) C8—C9—C10 119.8 (3)
O1i—Ni1—O1 180.000 (1) O3—C10—C2 126.1 (3)
O3—Ni1—N3ii 93.30 (11) O3—C10—C9 118.4 (3)
O3i—Ni1—N3ii 86.70 (11) C2—C10—C9 115.4 (3)
O1i—Ni1—N3ii 91.38 (11) N1—C11—C13 119.9 (4)
O1—Ni1—N3ii 88.62 (11) N1—C11—C12 119.9 (4)
O3—Ni1—N3iii 86.70 (11) C13—C11—C12 60.2 (3)
O3i—Ni1—N3iii 93.30 (11) N1—C11—H11 115.3
O1i—Ni1—N3iii 88.62 (11) C13—C11—H11 115.3
O1—Ni1—N3iii 91.38 (11) C12—C11—H11 115.3
N3ii—Ni1—N3iii 180.000 (1) C11—C12—C13 59.9 (3)
C1—O1—Ni1 132.5 (2) C11—C12—H12A 117.8
C10—O3—Ni1 127.7 (2) C13—C12—H12A 117.8
C3—N1—C4 119.4 (3) C11—C12—H12B 117.8
C3—N1—C11 121.3 (3) C13—C12—H12B 117.8
C4—N1—C11 119.1 (3) H12A—C12—H12B 114.9
C6—N2—C17 116.4 (3) C11—C13—C12 60.0 (3)
C6—N2—C14 119.4 (3) C11—C13—H13A 117.8
C17—N2—C14 110.0 (3) C12—C13—H13A 117.8
C16—N3—C15 108.6 (3) C11—C13—H13B 117.8
C16—N3—Ni1iv 111.6 (2) C12—C13—H13B 117.8
C15—N3—Ni1iv 119.4 (2) H13A—C13—H13B 114.9
C16—N3—H3N 109 (4) N2—C14—C15 110.6 (3)
C15—N3—H3N 111 (4) N2—C14—H14A 109.5
Ni1iv—N3—H3N 96 (4) C15—C14—H14A 109.5
O2—C1—O1 124.1 (3) N2—C14—H14B 109.5
O2—C1—C2 116.9 (3) C15—C14—H14B 109.5
O1—C1—C2 118.9 (3) H14A—C14—H14B 108.1
C3—C2—C10 118.9 (3) N3—C15—C14 113.8 (3)
C3—C2—C1 116.1 (3) N3—C15—H15A 108.8
C10—C2—C1 124.9 (3) C14—C15—H15A 108.8
N1—C3—C2 125.4 (3) N3—C15—H15B 108.8
N1—C3—H3 117.3 C14—C15—H15B 108.8
C2—C3—H3 117.3 H15A—C15—H15B 107.7
N1—C4—C5 121.3 (3) N3—C16—C17 114.6 (4)
N1—C4—C9 118.1 (3) N3—C16—H16A 108.6
C5—C4—C9 120.6 (3) C17—C16—H16A 108.6
C6—C5—C4 121.9 (3) N3—C16—H16B 108.6
C6—C5—H5 119.0 C17—C16—H16B 108.6
C4—C5—H5 119.0 H16A—C16—H16B 107.6
C5—C6—N2 122.7 (3) N2—C17—C16 110.1 (3)
C5—C6—C7 115.6 (3) N2—C17—H17A 109.6
N2—C6—C7 121.4 (3) C16—C17—H17A 109.6
C8—C7—F1 117.5 (3) N2—C17—H17B 109.6
C8—C7—C6 123.8 (3) C16—C17—H17B 109.6
F1—C7—C6 118.6 (3) H17A—C17—H17B 108.2
C7—C8—C9 120.5 (3)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, −y+3/2, z−1/2; (iii) −x+1, y−1/2, −z+3/2; (iv) −x+1, y+1/2, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3N···O2v 0.861 (10) 2.48 (4) 3.184 (4) 139 (5)

Symmetry codes: (v) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2060).

References

  1. An, Z., Cui, R.-H. & Wang, R.-S. (2007). Acta Cryst. E63, m1066–m1067.
  2. Bruker (1998). SMART, SAINT-Plus and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Mizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother.37, Suppl. A, 41-45. [DOI] [PubMed]
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  6. Xiao, D.-R., Wang, E.-B., An, H.-Y., Su, Z.-M., Li, Y.-G., Gao, L., Sun, C.-Y. & Xu, L. (2005). Chem. Eur. J 11, 6673–6686. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807065555/cs2060sup1.cif

e-64-0m176-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065555/cs2060Isup2.hkl

e-64-0m176-Isup2.hkl (141.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES