Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 12;64(Pt 1):m179–m180. doi: 10.1107/S1600536807065877

trans-Carbonyl­chloridobis(ethyl­diphenyl­phosphine-κP)rhodium(I)

Fabio Lorenzini a, Brian O Patrick a, Brian R James a,*
PMCID: PMC2915114  PMID: 21200527

Abstract

The title compound, [RhCl(C14H15P)2(CO)], crystallizes with two almost identical mol­ecules in the asymmetric unit. The mol­ecules have the RhI atom in a square-planar geometry. The crystal structure involves intermolecular C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Beck et al. (1999); Higham et al. (2004); Hoye et al. (1993); Lorenzini et al. (2007a ,b ,c ); O’Connor & Wilkinson (1969); Vallarino (1957); Vaska & Di Luzio (1961, 1962).graphic file with name e-64-0m179-scheme1.jpg

Experimental

Crystal data

  • [RhCl(C14H15P)2(CO)]

  • M r = 594.83

  • Monoclinic, Inline graphic

  • a = 9.8557 (14) Å

  • b = 16.385 (2) Å

  • c = 16.381 (2) Å

  • β = 90.216 (6)°

  • V = 2645.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 173.0 (1) K

  • 0.15 × 0.15 × 0.07 mm

Data collection

  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.701, T max = 0.940

  • 41680 measured reflections

  • 12665 independent reflections

  • 8610 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.080

  • S = 0.98

  • 12665 reflections

  • 668 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983), 6047 Friedel pairs

  • Flack parameter: 0.04 (4)

Data collection: SAINT (Bruker, 1997); cell refinement: SAINT; data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807065877/ng2391sup1.cif

e-64-0m179-sup1.cif (39.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065877/ng2391Isup2.hkl

e-64-0m179-Isup2.hkl (606.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

C57—Rh1 1.803 (13)
Cl1—Rh1 2.386 (3)
C58—Rh2 1.770 (17)
Cl2—Rh2 2.409 (4)
P1—Rh1 2.3161 (11)
P2—Rh1 2.3207 (11)
P3—Rh2 2.3154 (11)
P4—Rh2 2.3132 (11)
C57—Rh1—P1 89.8 (4)
C57—Rh1—P2 89.8 (4)
P1—Rh1—P2 178.85 (7)
C57—Rh1—Cl1 178.9 (4)
P1—Rh1—Cl1 89.65 (9)
P2—Rh1—Cl1 90.70 (9)
C58—Rh2—P4 91.4 (5)
C58—Rh2—P3 89.2 (5)
P4—Rh2—P3 179.25 (7)
C58—Rh2—Cl2 177.0 (5)
P4—Rh2—Cl2 89.25 (12)
P3—Rh2—Cl2 90.22 (11)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯O2i 0.95 2.64 3.424 (18) 140
C48—H48⋯O1Bii 0.95 2.68 3.51 (3) 145
C4—H4⋯O1Biii 0.95 2.71 3.51 (3) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Natural Sciences and Engineering Research Council of Canada for financial support via a Discovery Grant.

supplementary crystallographic information

Comment

We have recently reported the syntheses of water-soluble RhI—THP complexes (THP is tris(hydroxymethyl)phosphine, P(CH2OH)3) (Lorenzini et al., 2007a). During a subsequent study of the general reactivity of such complexes with other potential ligands, we discovered a remarkable reaction of RhCl(cod)(THP), where cod = 1,5-cyclooctadiene, with several PRR'2 phosphines (R = or ≠ R'), that generates, concomitantly with R'H, the phosphine-phosphinite derivatives RhCl(PRR'2)[P,PR'(R)POCH2P(CH2OH)2] in two isomeric cis- and trans-forms (cis and trans refer to the disposition of the P-atoms with the R and R' substituents) (Lorenzini et al., 2007b). Such reactions, when investigated under a hydrogen atmosphere, led to the serendipitous isolation of the dihydrido complexes cis,mer-Rh(H)2Cl(PRR'2)3, where R = Me, R' = Ph, or R = Cy, R' = Ph (Lorenzini et al., 2007c). 31P{1H} NMR data suggested the presence of traces of trans-RhCl(CO)(PRR'2)2 in some of the isolated RhCl(PRR'2)[P,PR'(R)POCH2P(CH2OH)2] complexes and in the in situ preparative solutions of the phosphine-phosphinite and dihydrido species (Lorenzini et al., 2007b). The carbonyl ligand is thought to arise via decarbonylation of formaldehyde which can be readily formed from transition metal-THP species (Higham et al., 2004; Hoye et al., 1993); the Wilkinson-type complex such as RhCl(PPh3)3 is well known to decarbonylate aldehydes with formation of trans-RhCl(CO)(PPh3)2 (Beck et al., 1999). The suggested formation of trans-RhCl(CO)(PRR'2)2 has now been confirmed by X-ray structural analysis of a single-crystal of trans-RhCl(CO)(PEtPh2)2 that was precipitated in trace yield during the reaction of RhCl(cod)(THP) with PEtPh2, under a hydrogen atmosphere.

The complex trans-RhCl(CO)(PPh3)2 was first reported 50 years ago (Vallarino, 1957), but it was not until the Ir analogue (Vaska's compound) was synthesized (Vaska & Di Luzio, 1961) and shown to oxidatively add H2 and other small molecules (Vaska & Di Luzio, 1962) that interest in such d8 square-planar molecules intensified. According to the Cambridge Crystallography Data Base, there have been 125 crystallographically characterized complexes of the type trans-RhCl(CO)(P-phosphine)2, where (P-phosphine)2 represents two monodentate ligands or one bidentate phosphine ligand but there are none containing PEtPh2. Indeed, in spite of the vast literature on the chemistry of Rh-phosphine complexes, we can find no other example of any isolated Rh-complex containing PEtPh2, although an in situ RhCl/PEtPh2 species has been noted (O'Connor & Wilkinson, 1969).

Experimental

General. The RhCl(cod)(THP) complex was synthesized by our recently reported method; (Lorenzini et al., 2007a) and PEtPh2 was used as received from Strem Chemicals. The Rh-phosphine reaction was carried out under Ar or H2 using standard Schlenk techniques. Acetone-d6 and CD3OD (Cambridge Isotope Laboratory) were used as received. 31P{1H}-NMR spectra were measured in acetone-d6 and CD3OD at room temperature (~300 K) on a Bruker AV400 spectrometer. External 85% aq H3PO4 were used as references (d = doublet, m = multiplet).

Trans-RhCl(CO)(PEtPh2)2. Addition of PEtPh2 (12 µL, 0.057 mmol) in acetone-d6 (0.3 ml) to a yellow CD3OD solution (0.3 ml) of RhCl(cod)(THP) (10 mg, 0.026 mmol) at room temperature under Ar results in the immediate formation of a brown solution. The Ar is then replaced by H2 and the vessel shaken, this resulting in a yellow solution. Over 12 h, a minute quantity of X-ray quality, yellow prism crystals of trans-RhCl(CO)(PEtPh2)2 deposit from the solution; the 31P{1H} of the yellow solution shows the doublet resonance of the title compound (δ 27.49, d, JPRh = 123.4 Hz) and also resonances at δ 36.64 (dd, 2P, JPRh = 112.0, JPP = 21.0 Hz, trans-P), and 18.29 (m, 1P, P-trans to Cl) thought to be due to RhCl(PEtPh2)3.

Refinement

The material crystallizes with two molecules in the asymmetric unit. In each molecule the Cl and CO ligands are positionally disordered. Each was modelled such that the sum of the ligands at each coordination site was 1.

Figures

Fig. 1.

Fig. 1.

 

Crystal data

[RhCl(C14H15P)2(CO)] F000 = 1216
Mr = 594.83 Dx = 1.494 Mg m3
Monoclinic, P21 Mo Kα radiation λ = 0.71073 Å
a = 9.8557 (14) Å Cell parameters from 6687 reflections
b = 16.385 (2) Å θ = 2.4–27.8º
c = 16.381 (2) Å µ = 0.89 mm1
β = 90.216 (6)º T = 173.0 (1) K
V = 2645.3 (6) Å3 Prism, yellow
Z = 4 0.15 × 0.15 × 0.07 mm

Data collection

Bruker X8 APEXII diffractometer 8610 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.049
T = 173.0(1) K θmax = 28.0º
area–detector scans θmin = 1.8º
Absorption correction: multi-scan(SADABS; Bruker, 2003) h = −12→12
Tmin = 0.701, Tmax = 0.940 k = −21→21
41680 measured reflections l = −21→21
12665 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037   w = 1/[σ2(Fo2) + (0.0297P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080 (Δ/σ)max = 0.001
S = 0.98 Δρmax = 0.45 e Å3
12665 reflections Δρmin = −0.36 e Å3
668 parameters Extinction correction: none
1 restraint Absolute structure: Flack (1983), 6047 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.04 (4)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.9538 (4) 0.4119 (3) 0.9327 (3) 0.0217 (10)
C2 0.9587 (4) 0.4211 (3) 0.8491 (3) 0.0229 (10)
H2 0.9777 0.4729 0.8258 0.027*
C3 0.9356 (4) 0.3539 (3) 0.7992 (3) 0.0286 (10)
H3 0.9371 0.3607 0.7417 0.034*
C4 0.9107 (5) 0.2785 (3) 0.8311 (3) 0.0337 (13)
H4 0.8969 0.2331 0.7961 0.040*
C5 0.9058 (5) 0.2687 (3) 0.9160 (4) 0.0306 (13)
H5 0.8886 0.2167 0.9392 0.037*
C6 0.9264 (5) 0.3359 (3) 0.9653 (3) 0.0288 (11)
H6 0.9216 0.3298 1.0228 0.035*
C7 0.9578 (5) 0.5884 (3) 0.9429 (3) 0.0201 (11)
C8 0.8304 (5) 0.6227 (3) 0.9481 (3) 0.0318 (13)
H8 0.7639 0.5988 0.9824 0.038*
C9 0.7990 (5) 0.6921 (3) 0.9032 (3) 0.0381 (13)
H9 0.7106 0.7150 0.9062 0.046*
C10 0.8947 (6) 0.7274 (3) 0.8551 (4) 0.0306 (14)
H10 0.8739 0.7759 0.8258 0.037*
C11 1.0193 (5) 0.6935 (3) 0.8489 (3) 0.0327 (12)
H11 1.0847 0.7177 0.8139 0.039*
C12 1.0527 (5) 0.6247 (3) 0.8924 (3) 0.0285 (10)
H12 1.1411 0.6020 0.8879 0.034*
C13 1.1777 (4) 0.4925 (3) 1.0074 (2) 0.0253 (9)
H13A 1.2141 0.4929 0.9512 0.030*
H13B 1.2108 0.5423 1.0353 0.030*
C14 1.2332 (5) 0.4181 (3) 1.0520 (3) 0.0389 (12)
H14A 1.1982 0.4171 1.1078 0.058*
H14B 1.3325 0.4208 1.0534 0.058*
H14C 1.2048 0.3684 1.0233 0.058*
C15 0.8052 (5) 0.4018 (3) 1.3072 (3) 0.0229 (11)
C16 0.9351 (5) 0.3710 (3) 1.3029 (3) 0.0318 (13)
H16 1.0003 0.3982 1.2702 0.038*
C17 0.9731 (5) 0.3013 (3) 1.3452 (3) 0.0377 (13)
H17 1.0636 0.2817 1.3423 0.045*
C18 0.8783 (6) 0.2608 (4) 1.3914 (4) 0.0361 (14)
H18 0.9026 0.2123 1.4196 0.043*
C19 0.7478 (5) 0.2909 (3) 1.3967 (3) 0.0430 (14)
H19 0.6826 0.2632 1.4290 0.052*
C20 0.7116 (5) 0.3606 (3) 1.3554 (3) 0.0379 (12)
H20 0.6216 0.3808 1.3597 0.045*
C21 0.7961 (4) 0.5771 (3) 1.3191 (3) 0.0225 (10)
C22 0.7836 (4) 0.5671 (3) 1.4027 (3) 0.0261 (10)
H22 0.7622 0.5150 1.4245 0.031*
C23 0.8021 (5) 0.6328 (3) 1.4547 (3) 0.0333 (12)
H23 0.7933 0.6254 1.5119 0.040*
C24 0.8332 (5) 0.7093 (3) 1.4237 (3) 0.0349 (13)
H24 0.8478 0.7540 1.4596 0.042*
C25 0.8427 (5) 0.7200 (3) 1.3417 (4) 0.0361 (14)
H25 0.8614 0.7727 1.3204 0.043*
C26 0.8254 (5) 0.6549 (3) 1.2888 (3) 0.0296 (11)
H26 0.8334 0.6631 1.2316 0.036*
C27 0.5785 (4) 0.4937 (3) 1.2440 (3) 0.0316 (10)
H27A 0.5477 0.4440 1.2150 0.038*
H27B 0.5423 0.4914 1.3002 0.038*
C28 0.5200 (5) 0.5684 (3) 1.2010 (3) 0.0428 (13)
H28A 0.5491 0.6179 1.2297 0.064*
H28B 0.4208 0.5652 1.2010 0.064*
H28C 0.5527 0.5700 1.1445 0.064*
C29 0.5462 (5) 0.9084 (3) 0.1954 (3) 0.0207 (11)
C30 0.4458 (5) 0.8558 (3) 0.1673 (3) 0.0323 (11)
H30 0.3528 0.8693 0.1746 0.039*
C31 0.4809 (5) 0.7846 (3) 0.1291 (3) 0.0377 (13)
H31 0.4116 0.7479 0.1124 0.045*
C32 0.6137 (6) 0.7653 (4) 0.1143 (4) 0.0317 (14)
H32 0.6365 0.7166 0.0860 0.038*
C33 0.7145 (5) 0.8179 (3) 0.1414 (3) 0.0317 (11)
H33 0.8072 0.8052 0.1320 0.038*
C34 0.6804 (5) 0.8888 (3) 0.1821 (3) 0.0249 (11)
H34 0.7499 0.9244 0.2009 0.030*
C35 0.5486 (4) 1.0840 (3) 0.1819 (3) 0.0228 (10)
C36 0.5895 (5) 1.1597 (3) 0.2134 (3) 0.0290 (11)
H36 0.6007 1.1668 0.2706 0.035*
C37 0.6134 (5) 1.2244 (3) 0.1605 (4) 0.0308 (13)
H37 0.6409 1.2757 0.1819 0.037*
C38 0.5980 (5) 1.2152 (3) 0.0787 (3) 0.0335 (13)
H38 0.6141 1.2601 0.0434 0.040*
C39 0.5591 (5) 1.1409 (3) 0.0463 (3) 0.0316 (11)
H39 0.5500 1.1345 −0.0111 0.038*
C40 0.5333 (4) 1.0753 (3) 0.0982 (3) 0.0259 (10)
H40 0.5051 1.0244 0.0762 0.031*
C41 0.3228 (4) 1.0043 (3) 0.2550 (2) 0.0264 (9)
H41A 0.2872 1.0006 0.1985 0.032*
H41B 0.2894 0.9562 0.2855 0.032*
C42 0.2677 (5) 1.0820 (3) 0.2950 (3) 0.0372 (12)
H42A 0.3008 1.0854 0.3514 0.056*
H42B 0.1683 1.0805 0.2949 0.056*
H42C 0.2987 1.1298 0.2644 0.056*
C43 0.6994 (4) 0.9272 (3) 0.5727 (3) 0.0225 (10)
C44 0.6515 (4) 0.8529 (3) 0.5463 (3) 0.0265 (11)
H44 0.6356 0.8441 0.4898 0.032*
C45 0.6264 (5) 0.7911 (3) 0.6014 (4) 0.0368 (15)
H45 0.5937 0.7398 0.5828 0.044*
C46 0.6488 (5) 0.8042 (3) 0.6836 (3) 0.0356 (13)
H46 0.6312 0.7619 0.7218 0.043*
C47 0.6962 (5) 0.8777 (3) 0.7100 (3) 0.0334 (12)
H47 0.7106 0.8866 0.7666 0.040*
C48 0.7234 (4) 0.9395 (3) 0.6551 (3) 0.0254 (10)
H48 0.7584 0.9902 0.6738 0.030*
C49 0.7068 (5) 1.1020 (3) 0.5537 (3) 0.0213 (11)
C50 0.5730 (5) 1.1252 (3) 0.5646 (3) 0.0305 (13)
H50 0.5021 1.0916 0.5440 0.037*
C51 0.5414 (5) 1.1965 (3) 0.6052 (3) 0.0397 (13)
H51 0.4492 1.2108 0.6140 0.048*
C52 0.6422 (6) 1.2462 (4) 0.6325 (4) 0.0405 (16)
H52 0.6202 1.2958 0.6595 0.049*
C53 0.7755 (5) 1.2252 (3) 0.6212 (3) 0.0404 (13)
H53 0.8457 1.2604 0.6398 0.049*
C54 0.8080 (5) 1.1519 (3) 0.5823 (3) 0.0321 (11)
H54 0.9003 1.1366 0.5758 0.039*
C55 0.9249 (4) 1.0010 (3) 0.4947 (2) 0.0272 (9)
H55A 0.9594 1.0481 0.4631 0.033*
H55B 0.9612 1.0057 0.5509 0.033*
C56 0.9788 (5) 0.9231 (3) 0.4568 (3) 0.0389 (13)
H56A 0.9535 0.8765 0.4910 0.058*
H56B 1.0779 0.9263 0.4530 0.058*
H56C 0.9399 0.9163 0.4021 0.058*
O1 0.6403 (12) 0.4282 (9) 1.0455 (9) 0.042 (3) 0.690 (16)
C57 0.7319 (13) 0.4523 (8) 1.0755 (8) 0.026 (2) 0.690 (16)
Cl1 1.0740 (4) 0.5520 (2) 1.1907 (2) 0.0325 (13) 0.690 (16)
O2 0.3780 (16) 0.9494 (11) 0.4549 (11) 0.046 (4) 0.505 (16)
C58 0.4754 (16) 0.9675 (10) 0.4244 (9) 0.029 (3) 0.505 (16)
Cl2 0.8281 (4) 1.0452 (3) 0.3070 (3) 0.0330 (16) 0.505 (16)
O1B 1.118 (2) 0.5677 (18) 1.2021 (16) 0.036 (6) 0.310 (16)
C57B 1.017 (3) 0.5407 (15) 1.1698 (14) 0.024 (5) 0.310 (16)
Cl1B 0.6789 (8) 0.4422 (6) 1.0585 (5) 0.029 (2) 0.310 (16)
O2B 0.8740 (14) 1.0596 (10) 0.2968 (9) 0.044 (3) 0.495 (16)
C58B 0.7709 (15) 1.0374 (7) 0.3261 (8) 0.028 (3)* 0.495 (16)
Cl2B 0.4212 (5) 0.9610 (3) 0.4431 (3) 0.0271 (16) 0.495 (16)
P1 0.99277 (10) 0.49628 (8) 1.00219 (6) 0.0213 (2)
P2 0.76358 (10) 0.49333 (8) 1.24884 (6) 0.0232 (2)
P3 0.50860 (10) 1.00148 (8) 0.25227 (6) 0.0206 (2)
P4 0.74016 (10) 1.00706 (8) 0.49855 (6) 0.0207 (2)
Rh1 0.87809 (4) 0.49622 (3) 1.12535 (3) 0.02214 (9)
Rh2 0.62381 (4) 1.00347 (3) 0.37570 (3) 0.02055 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.020 (2) 0.023 (2) 0.022 (2) 0.0041 (18) 0.0033 (18) −0.0033 (19)
C2 0.021 (2) 0.023 (2) 0.024 (2) 0.0045 (18) 0.0029 (18) 0.0027 (18)
C3 0.028 (2) 0.033 (3) 0.025 (3) 0.006 (2) −0.0021 (19) −0.007 (2)
C4 0.032 (3) 0.028 (3) 0.041 (3) 0.005 (2) −0.001 (2) −0.011 (2)
C5 0.031 (3) 0.021 (3) 0.040 (3) 0.002 (2) 0.002 (2) 0.007 (2)
C6 0.035 (3) 0.026 (3) 0.025 (3) 0.003 (2) 0.002 (2) 0.005 (2)
C7 0.022 (2) 0.018 (2) 0.021 (3) 0.0014 (18) 0.0001 (19) −0.0026 (19)
C8 0.031 (3) 0.031 (3) 0.034 (3) −0.003 (2) 0.009 (2) 0.008 (2)
C9 0.026 (3) 0.037 (3) 0.051 (4) 0.010 (2) 0.005 (2) 0.000 (3)
C10 0.038 (3) 0.022 (3) 0.032 (3) 0.001 (2) 0.001 (2) 0.000 (2)
C11 0.035 (3) 0.029 (3) 0.034 (3) −0.002 (2) 0.005 (2) 0.007 (2)
C12 0.026 (2) 0.030 (2) 0.029 (3) 0.002 (2) 0.007 (2) 0.007 (2)
C13 0.023 (2) 0.029 (2) 0.024 (2) −0.002 (2) 0.0001 (16) 0.004 (2)
C14 0.036 (3) 0.044 (3) 0.036 (3) 0.007 (2) −0.003 (2) 0.011 (2)
C15 0.028 (3) 0.020 (2) 0.021 (3) −0.0035 (19) 0.0034 (19) −0.0016 (19)
C16 0.032 (3) 0.030 (3) 0.034 (3) 0.003 (2) 0.007 (2) 0.003 (2)
C17 0.039 (3) 0.038 (3) 0.036 (3) 0.009 (2) 0.008 (2) 0.015 (2)
C18 0.054 (4) 0.025 (3) 0.029 (3) 0.000 (2) −0.009 (3) 0.009 (2)
C19 0.043 (3) 0.045 (3) 0.041 (3) −0.013 (3) 0.002 (2) 0.023 (3)
C20 0.030 (3) 0.039 (3) 0.045 (3) −0.007 (2) 0.005 (2) 0.011 (2)
C21 0.019 (2) 0.024 (2) 0.024 (2) −0.0016 (18) 0.0049 (18) 0.0018 (18)
C22 0.022 (2) 0.029 (2) 0.027 (2) 0.0041 (19) 0.0048 (18) 0.002 (2)
C23 0.031 (3) 0.045 (3) 0.024 (3) 0.006 (2) 0.003 (2) −0.005 (2)
C24 0.031 (3) 0.032 (3) 0.042 (3) 0.001 (2) 0.006 (2) −0.014 (2)
C25 0.034 (3) 0.025 (3) 0.049 (4) −0.006 (2) 0.014 (3) −0.004 (2)
C26 0.031 (3) 0.029 (3) 0.029 (3) −0.005 (2) 0.004 (2) 0.002 (2)
C27 0.025 (2) 0.039 (3) 0.030 (2) −0.005 (2) 0.0068 (17) 0.002 (2)
C28 0.031 (3) 0.050 (3) 0.048 (3) 0.007 (2) 0.004 (2) 0.003 (3)
C29 0.022 (3) 0.024 (3) 0.016 (3) −0.005 (2) −0.0011 (19) 0.000 (2)
C30 0.024 (2) 0.033 (3) 0.039 (3) −0.002 (2) 0.001 (2) −0.015 (2)
C31 0.033 (3) 0.031 (3) 0.049 (4) −0.010 (2) 0.004 (2) −0.014 (2)
C32 0.039 (3) 0.029 (3) 0.028 (3) −0.001 (2) −0.002 (2) −0.007 (2)
C33 0.025 (3) 0.037 (3) 0.034 (3) 0.000 (2) 0.002 (2) −0.004 (2)
C34 0.022 (2) 0.026 (3) 0.026 (3) −0.004 (2) −0.004 (2) −0.002 (2)
C35 0.020 (2) 0.027 (2) 0.021 (2) 0.0020 (19) 0.0016 (18) 0.0037 (19)
C36 0.034 (3) 0.024 (2) 0.029 (3) −0.004 (2) 0.002 (2) −0.006 (2)
C37 0.028 (3) 0.024 (3) 0.040 (3) 0.000 (2) −0.001 (2) −0.001 (2)
C38 0.040 (3) 0.026 (3) 0.034 (3) 0.005 (2) 0.008 (2) 0.010 (2)
C39 0.034 (3) 0.041 (3) 0.020 (2) 0.005 (2) 0.0040 (19) 0.009 (2)
C40 0.025 (2) 0.026 (2) 0.026 (2) 0.0012 (18) −0.0019 (18) −0.0007 (19)
C41 0.021 (2) 0.031 (3) 0.027 (2) −0.004 (2) −0.0003 (16) −0.001 (2)
C42 0.032 (3) 0.037 (3) 0.042 (3) 0.007 (2) 0.003 (2) −0.007 (2)
C43 0.021 (2) 0.022 (2) 0.024 (2) 0.0003 (18) −0.0012 (18) 0.0003 (18)
C44 0.028 (3) 0.026 (2) 0.025 (3) 0.005 (2) −0.001 (2) 0.001 (2)
C45 0.033 (3) 0.025 (3) 0.053 (4) −0.003 (2) 0.005 (3) 0.007 (3)
C46 0.033 (3) 0.035 (3) 0.039 (3) 0.004 (2) 0.010 (2) 0.019 (2)
C47 0.032 (3) 0.047 (3) 0.022 (3) 0.013 (2) 0.004 (2) 0.008 (2)
C48 0.028 (2) 0.027 (2) 0.021 (2) 0.0058 (19) −0.0035 (18) −0.0013 (19)
C49 0.029 (3) 0.018 (2) 0.017 (3) −0.0006 (19) −0.0038 (19) −0.0008 (18)
C50 0.032 (3) 0.023 (3) 0.036 (3) −0.002 (2) −0.003 (2) −0.005 (2)
C51 0.039 (3) 0.040 (3) 0.040 (3) 0.010 (2) 0.002 (3) −0.008 (3)
C52 0.057 (4) 0.026 (3) 0.038 (4) 0.008 (3) 0.003 (3) −0.009 (3)
C53 0.049 (3) 0.034 (3) 0.038 (3) −0.008 (3) −0.006 (3) −0.012 (2)
C54 0.029 (3) 0.034 (3) 0.034 (3) −0.005 (2) −0.003 (2) −0.003 (2)
C55 0.025 (2) 0.031 (3) 0.026 (2) −0.004 (2) −0.0040 (16) −0.001 (2)
C56 0.031 (3) 0.041 (3) 0.045 (3) 0.006 (2) 0.003 (2) −0.005 (3)
O1 0.033 (7) 0.056 (6) 0.038 (6) −0.015 (5) −0.003 (4) −0.009 (4)
C57 0.025 (7) 0.031 (5) 0.021 (5) −0.007 (5) 0.003 (5) −0.001 (4)
Cl1 0.032 (3) 0.037 (2) 0.028 (2) −0.004 (2) 0.0013 (19) −0.0021 (15)
O2 0.040 (9) 0.064 (8) 0.033 (7) −0.009 (6) 0.011 (6) 0.001 (5)
C58 0.025 (8) 0.040 (7) 0.020 (6) 0.012 (6) 0.009 (5) 0.000 (5)
Cl2 0.027 (4) 0.045 (2) 0.027 (2) −0.0107 (19) −0.001 (2) 0.0060 (14)
O1B 0.022 (12) 0.041 (13) 0.046 (11) −0.005 (8) −0.015 (8) 0.002 (8)
C57B 0.032 (14) 0.027 (10) 0.014 (10) 0.006 (10) 0.003 (9) −0.007 (8)
Cl1B 0.017 (6) 0.045 (4) 0.026 (5) −0.016 (4) −0.006 (4) −0.008 (3)
O2B 0.024 (7) 0.060 (7) 0.048 (7) −0.019 (5) 0.004 (5) 0.005 (5)
Cl2B 0.022 (4) 0.038 (2) 0.022 (3) −0.003 (2) 0.004 (2) 0.0006 (17)
P1 0.0240 (5) 0.0224 (6) 0.0175 (5) 0.0000 (5) 0.0027 (4) 0.0026 (5)
P2 0.0233 (5) 0.0245 (6) 0.0219 (6) −0.0033 (5) 0.0042 (4) 0.0027 (5)
P3 0.0218 (5) 0.0226 (6) 0.0175 (5) −0.0030 (5) −0.0024 (4) −0.0018 (5)
P4 0.0224 (5) 0.0219 (6) 0.0179 (5) −0.0024 (5) −0.0023 (4) −0.0016 (5)
Rh1 0.02361 (14) 0.0258 (2) 0.01709 (13) −0.00473 (15) 0.00288 (10) 0.00149 (14)
Rh2 0.02122 (13) 0.0247 (2) 0.01573 (12) −0.00439 (14) −0.00130 (9) −0.00039 (13)

Geometric parameters (Å, °)

C1—C2 1.379 (6) C32—H32 0.9500
C1—C6 1.381 (6) C33—C34 1.382 (7)
C1—P1 1.831 (4) C33—H33 0.9500
C2—C3 1.388 (6) C34—H34 0.9500
C2—H2 0.9500 C35—C40 1.385 (6)
C3—C4 1.363 (6) C35—C36 1.403 (6)
C3—H3 0.9500 C35—P3 1.821 (4)
C4—C5 1.400 (8) C36—C37 1.390 (7)
C4—H4 0.9500 C36—H36 0.9500
C5—C6 1.380 (7) C37—C38 1.357 (8)
C5—H5 0.9500 C37—H37 0.9500
C6—H6 0.9500 C38—C39 1.381 (7)
C7—C8 1.379 (6) C38—H38 0.9500
C7—C12 1.385 (6) C39—C40 1.395 (6)
C7—P1 1.827 (5) C39—H39 0.9500
C8—C9 1.388 (7) C40—H40 0.9500
C8—H8 0.9500 C41—C42 1.533 (6)
C9—C10 1.360 (7) C41—P3 1.832 (4)
C9—H9 0.9500 C41—H41A 0.9900
C10—C11 1.352 (7) C41—H41B 0.9900
C10—H10 0.9500 C42—H42A 0.9800
C11—C12 1.374 (6) C42—H42B 0.9800
C11—H11 0.9500 C42—H42C 0.9800
C12—H12 0.9500 C43—C44 1.374 (6)
C13—C14 1.521 (6) C43—C48 1.384 (6)
C13—P1 1.825 (4) C43—P4 1.831 (4)
C13—H13A 0.9900 C44—C45 1.379 (7)
C13—H13B 0.9900 C44—H44 0.9500
C14—H14A 0.9800 C45—C46 1.381 (8)
C14—H14B 0.9800 C45—H45 0.9500
C14—H14C 0.9800 C46—C47 1.362 (7)
C15—C16 1.378 (7) C46—H46 0.9500
C15—C20 1.392 (7) C47—C48 1.381 (6)
C15—P2 1.824 (5) C47—H47 0.9500
C16—C17 1.387 (7) C48—H48 0.9500
C16—H16 0.9500 C49—C54 1.371 (6)
C17—C18 1.375 (7) C49—C50 1.385 (7)
C17—H17 0.9500 C49—P4 1.829 (5)
C18—C19 1.380 (7) C50—C51 1.380 (6)
C18—H18 0.9500 C50—H50 0.9500
C19—C20 1.374 (7) C51—C52 1.359 (8)
C19—H19 0.9500 C51—H51 0.9500
C20—H20 0.9500 C52—C53 1.372 (7)
C21—C22 1.385 (6) C52—H52 0.9500
C21—C26 1.399 (6) C53—C54 1.397 (6)
C21—P2 1.818 (4) C53—H53 0.9500
C22—C23 1.383 (6) C54—H54 0.9500
C22—H22 0.9500 C55—C56 1.516 (6)
C23—C24 1.387 (7) C55—P4 1.825 (4)
C23—H23 0.9500 C55—H55A 0.9900
C24—C25 1.358 (8) C55—H55B 0.9900
C24—H24 0.9500 C56—H56A 0.9800
C25—C26 1.385 (7) C56—H56B 0.9800
C25—H25 0.9500 C56—H56C 0.9800
C26—H26 0.9500 O1—C57 1.10 (2)
C27—C28 1.524 (6) C57—Rh1 1.803 (13)
C27—P2 1.825 (4) Cl1—Rh1 2.386 (3)
C27—H27A 0.9900 O2—C58 1.12 (3)
C27—H27B 0.9900 C58—Rh2 1.770 (17)
C28—H28A 0.9800 Cl2—Rh2 2.409 (4)
C28—H28B 0.9800 O1B—C57B 1.21 (4)
C28—H28C 0.9800 C57B—Rh1 1.71 (3)
C29—C34 1.379 (6) Cl1B—Rh1 2.412 (6)
C29—C30 1.390 (6) O2B—C58B 1.18 (3)
C29—P3 1.826 (5) C58B—Rh2 1.755 (17)
C30—C31 1.369 (6) Cl2B—Rh2 2.389 (4)
C30—H30 0.9500 P1—Rh1 2.3161 (11)
C31—C32 1.370 (7) P2—Rh1 2.3207 (11)
C31—H31 0.9500 P3—Rh2 2.3154 (11)
C32—C33 1.388 (7) P4—Rh2 2.3132 (11)
C2—C1—C6 119.3 (4) C39—C38—H38 119.8
C2—C1—P1 121.8 (3) C38—C39—C40 119.7 (4)
C6—C1—P1 118.8 (3) C38—C39—H39 120.1
C1—C2—C3 119.4 (4) C40—C39—H39 120.1
C1—C2—H2 120.3 C35—C40—C39 120.3 (4)
C3—C2—H2 120.3 C35—C40—H40 119.8
C4—C3—C2 121.5 (5) C39—C40—H40 119.8
C4—C3—H3 119.3 C42—C41—P3 112.7 (3)
C2—C3—H3 119.3 C42—C41—H41A 109.0
C3—C4—C5 119.4 (5) P3—C41—H41A 109.0
C3—C4—H4 120.3 C42—C41—H41B 109.0
C5—C4—H4 120.3 P3—C41—H41B 109.0
C6—C5—C4 118.9 (5) H41A—C41—H41B 107.8
C6—C5—H5 120.5 C41—C42—H42A 109.5
C4—C5—H5 120.5 C41—C42—H42B 109.5
C5—C6—C1 121.4 (4) H42A—C42—H42B 109.5
C5—C6—H6 119.3 C41—C42—H42C 109.5
C1—C6—H6 119.3 H42A—C42—H42C 109.5
C8—C7—C12 118.6 (4) H42B—C42—H42C 109.5
C8—C7—P1 118.3 (4) C44—C43—C48 119.5 (4)
C12—C7—P1 123.1 (4) C44—C43—P4 120.0 (3)
C7—C8—C9 120.2 (4) C48—C43—P4 120.3 (3)
C7—C8—H8 119.9 C43—C44—C45 120.5 (5)
C9—C8—H8 119.9 C43—C44—H44 119.8
C10—C9—C8 120.1 (5) C45—C44—H44 119.8
C10—C9—H9 120.0 C44—C45—C46 119.7 (5)
C8—C9—H9 120.0 C44—C45—H45 120.2
C11—C10—C9 120.0 (5) C46—C45—H45 120.2
C11—C10—H10 120.0 C47—C46—C45 120.0 (5)
C9—C10—H10 120.0 C47—C46—H46 120.0
C10—C11—C12 121.0 (5) C45—C46—H46 120.0
C10—C11—H11 119.5 C46—C47—C48 120.6 (5)
C12—C11—H11 119.5 C46—C47—H47 119.7
C11—C12—C7 120.1 (4) C48—C47—H47 119.7
C11—C12—H12 120.0 C47—C48—C43 119.7 (4)
C7—C12—H12 120.0 C47—C48—H48 120.2
C14—C13—P1 114.0 (3) C43—C48—H48 120.2
C14—C13—H13A 108.7 C54—C49—C50 118.9 (4)
P1—C13—H13A 108.7 C54—C49—P4 123.0 (4)
C14—C13—H13B 108.7 C50—C49—P4 118.0 (4)
P1—C13—H13B 108.7 C51—C50—C49 120.8 (5)
H13A—C13—H13B 107.6 C51—C50—H50 119.6
C13—C14—H14A 109.5 C49—C50—H50 119.6
C13—C14—H14B 109.5 C52—C51—C50 120.0 (5)
H14A—C14—H14B 109.5 C52—C51—H51 120.0
C13—C14—H14C 109.5 C50—C51—H51 120.0
H14A—C14—H14C 109.5 C51—C52—C53 120.3 (5)
H14B—C14—H14C 109.5 C51—C52—H52 119.9
C16—C15—C20 118.0 (5) C53—C52—H52 119.9
C16—C15—P2 118.8 (4) C52—C53—C54 119.9 (5)
C20—C15—P2 123.2 (4) C52—C53—H53 120.0
C15—C16—C17 121.7 (5) C54—C53—H53 120.0
C15—C16—H16 119.1 C49—C54—C53 120.1 (5)
C17—C16—H16 119.1 C49—C54—H54 120.0
C18—C17—C16 119.3 (5) C53—C54—H54 120.0
C18—C17—H17 120.3 C56—C55—P4 114.3 (3)
C16—C17—H17 120.3 C56—C55—H55A 108.7
C17—C18—C19 119.9 (5) P4—C55—H55A 108.7
C17—C18—H18 120.1 C56—C55—H55B 108.7
C19—C18—H18 120.1 P4—C55—H55B 108.7
C20—C19—C18 120.4 (5) H55A—C55—H55B 107.6
C20—C19—H19 119.8 C55—C56—H56A 109.5
C18—C19—H19 119.8 C55—C56—H56B 109.5
C19—C20—C15 120.8 (5) H56A—C56—H56B 109.5
C19—C20—H20 119.6 C55—C56—H56C 109.5
C15—C20—H20 119.6 H56A—C56—H56C 109.5
C22—C21—C26 118.5 (4) H56B—C56—H56C 109.5
C22—C21—P2 121.4 (3) O1—C57—Rh1 177.3 (16)
C26—C21—P2 119.9 (4) O2—C58—Rh2 175.7 (19)
C23—C22—C21 120.3 (4) O1B—C57B—Rh1 176 (3)
C23—C22—H22 119.8 O2B—C58B—Rh2 176.1 (14)
C21—C22—H22 119.8 C13—P1—C7 103.8 (2)
C22—C23—C24 120.5 (4) C13—P1—C1 102.2 (2)
C22—C23—H23 119.8 C7—P1—C1 104.76 (19)
C24—C23—H23 119.8 C13—P1—Rh1 116.71 (13)
C25—C24—C23 119.6 (5) C7—P1—Rh1 111.83 (16)
C25—C24—H24 120.2 C1—P1—Rh1 116.06 (15)
C23—C24—H24 120.2 C21—P2—C15 104.4 (2)
C24—C25—C26 120.7 (5) C21—P2—C27 101.5 (2)
C24—C25—H25 119.6 C15—P2—C27 104.4 (2)
C26—C25—H25 119.6 C21—P2—Rh1 116.82 (14)
C25—C26—C21 120.3 (5) C15—P2—Rh1 111.38 (17)
C25—C26—H26 119.8 C27—P2—Rh1 116.82 (14)
C21—C26—H26 119.8 C35—P3—C29 104.62 (19)
C28—C27—P2 113.5 (3) C35—P3—C41 102.4 (2)
C28—C27—H27A 108.9 C29—P3—C41 103.8 (2)
P2—C27—H27A 108.9 C35—P3—Rh2 115.85 (15)
C28—C27—H27B 108.9 C29—P3—Rh2 110.93 (16)
P2—C27—H27B 108.9 C41—P3—Rh2 117.74 (13)
H27A—C27—H27B 107.7 C55—P4—C49 104.2 (2)
C27—C28—H28A 109.5 C55—P4—C43 101.9 (2)
C27—C28—H28B 109.5 C49—P4—C43 103.9 (2)
H28A—C28—H28B 109.5 C55—P4—Rh2 117.37 (13)
C27—C28—H28C 109.5 C49—P4—Rh2 111.21 (17)
H28A—C28—H28C 109.5 C43—P4—Rh2 116.70 (15)
H28B—C28—H28C 109.5 C57B—Rh1—C57 177.8 (11)
C34—C29—C30 119.1 (4) C57B—Rh1—P1 88.7 (8)
C34—C29—P3 118.2 (3) C57—Rh1—P1 89.8 (4)
C30—C29—P3 122.7 (4) C57B—Rh1—P2 91.7 (8)
C31—C30—C29 119.9 (5) C57—Rh1—P2 89.8 (4)
C31—C30—H30 120.0 P1—Rh1—P2 178.85 (7)
C29—C30—H30 120.0 C57B—Rh1—Cl1 2.8 (8)
C30—C31—C32 121.4 (5) C57—Rh1—Cl1 178.9 (4)
C30—C31—H31 119.3 P1—Rh1—Cl1 89.65 (9)
C32—C31—H31 119.3 P2—Rh1—Cl1 90.70 (9)
C31—C32—C33 118.9 (5) C57B—Rh1—Cl1B 176.2 (9)
C31—C32—H32 120.6 C57—Rh1—Cl1B 2.0 (4)
C33—C32—H32 120.6 P1—Rh1—Cl1B 90.2 (2)
C34—C33—C32 120.1 (5) P2—Rh1—Cl1B 89.5 (2)
C34—C33—H33 119.9 Cl1—Rh1—Cl1B 179.0 (3)
C32—C33—H33 119.9 C58B—Rh2—C58 178.8 (7)
C29—C34—C33 120.5 (4) C58B—Rh2—P4 89.3 (4)
C29—C34—H34 119.8 C58—Rh2—P4 91.4 (5)
C33—C34—H34 119.8 C58B—Rh2—P3 90.2 (4)
C40—C35—C36 119.0 (4) C58—Rh2—P3 89.2 (5)
C40—C35—P3 121.8 (3) P4—Rh2—P3 179.25 (7)
C36—C35—P3 119.1 (3) C58B—Rh2—Cl2B 178.4 (4)
C37—C36—C35 119.6 (5) C58—Rh2—Cl2B 2.5 (5)
C37—C36—H36 120.2 P4—Rh2—Cl2B 91.03 (13)
C35—C36—H36 120.2 P3—Rh2—Cl2B 89.50 (13)
C38—C37—C36 120.8 (5) C58B—Rh2—Cl2 2.0 (4)
C38—C37—H37 119.6 C58—Rh2—Cl2 177.0 (5)
C36—C37—H37 119.6 P4—Rh2—Cl2 89.25 (12)
C37—C38—C39 120.5 (5) P3—Rh2—Cl2 90.22 (11)
C37—C38—H38 119.8 Cl2B—Rh2—Cl2 179.5 (2)
C6—C1—C2—C3 0.2 (6) C16—C15—P2—C21 −91.8 (5)
P1—C1—C2—C3 176.4 (3) C20—C15—P2—C21 89.1 (5)
C1—C2—C3—C4 −1.3 (7) C16—C15—P2—C27 162.0 (4)
C2—C3—C4—C5 1.2 (7) C20—C15—P2—C27 −17.0 (5)
C3—C4—C5—C6 0.0 (7) C16—C15—P2—Rh1 35.1 (5)
C4—C5—C6—C1 −1.1 (7) C20—C15—P2—Rh1 −144.0 (4)
C2—C1—C6—C5 1.0 (7) C28—C27—P2—C21 68.7 (4)
P1—C1—C6—C5 −175.3 (4) C28—C27—P2—C15 177.0 (3)
C12—C7—C8—C9 0.1 (8) C28—C27—P2—Rh1 −59.5 (4)
P1—C7—C8—C9 −179.2 (4) C40—C35—P3—C29 31.4 (4)
C7—C8—C9—C10 −1.2 (8) C36—C35—P3—C29 −151.8 (4)
C8—C9—C10—C11 2.0 (9) C40—C35—P3—C41 −76.6 (4)
C9—C10—C11—C12 −1.8 (9) C36—C35—P3—C41 100.1 (4)
C10—C11—C12—C7 0.7 (8) C40—C35—P3—Rh2 153.9 (3)
C8—C7—C12—C11 0.1 (7) C36—C35—P3—Rh2 −29.4 (4)
P1—C7—C12—C11 179.4 (4) C34—C29—P3—C35 72.5 (4)
C20—C15—C16—C17 −0.3 (8) C30—C29—P3—C35 −109.3 (4)
P2—C15—C16—C17 −179.4 (4) C34—C29—P3—C41 179.5 (4)
C15—C16—C17—C18 1.3 (9) C30—C29—P3—C41 −2.3 (5)
C16—C17—C18—C19 −1.4 (9) C34—C29—P3—Rh2 −53.1 (4)
C17—C18—C19—C20 0.6 (9) C30—C29—P3—Rh2 125.1 (4)
C18—C19—C20—C15 0.4 (9) C42—C41—P3—C35 −67.0 (3)
C16—C15—C20—C19 −0.5 (8) C42—C41—P3—C29 −175.7 (3)
P2—C15—C20—C19 178.6 (4) C42—C41—P3—Rh2 61.3 (3)
C26—C21—C22—C23 −1.1 (6) C56—C55—P4—C49 175.6 (3)
P2—C21—C22—C23 −176.7 (3) C56—C55—P4—C43 67.8 (4)
C21—C22—C23—C24 0.1 (7) C56—C55—P4—Rh2 −61.0 (4)
C22—C23—C24—C25 1.4 (7) C54—C49—P4—C55 0.0 (5)
C23—C24—C25—C26 −1.8 (8) C50—C49—P4—C55 178.2 (4)
C24—C25—C26—C21 0.8 (8) C54—C49—P4—C43 106.3 (4)
C22—C21—C26—C25 0.7 (7) C50—C49—P4—C43 −75.5 (4)
P2—C21—C26—C25 176.3 (4) C54—C49—P4—Rh2 −127.3 (4)
C34—C29—C30—C31 1.9 (7) C50—C49—P4—Rh2 50.9 (4)
P3—C29—C30—C31 −176.3 (4) C44—C43—P4—C55 −102.2 (4)
C29—C30—C31—C32 −3.0 (8) C48—C43—P4—C55 74.3 (4)
C30—C31—C32—C33 2.3 (9) C44—C43—P4—C49 149.8 (4)
C31—C32—C33—C34 −0.5 (8) C48—C43—P4—C49 −33.8 (4)
C30—C29—C34—C33 −0.1 (7) C44—C43—P4—Rh2 27.0 (4)
P3—C29—C34—C33 178.2 (4) C48—C43—P4—Rh2 −156.6 (3)
C32—C33—C34—C29 −0.6 (8) C13—P1—Rh1—C57B 27.4 (8)
C40—C35—C36—C37 0.2 (7) C7—P1—Rh1—C57B −91.9 (8)
P3—C35—C36—C37 −176.7 (3) C1—P1—Rh1—C57B 148.0 (8)
C35—C36—C37—C38 −0.1 (7) C13—P1—Rh1—C57 −154.3 (4)
C36—C37—C38—C39 −0.5 (8) C7—P1—Rh1—C57 86.4 (4)
C37—C38—C39—C40 1.1 (7) C1—P1—Rh1—C57 −33.7 (4)
C36—C35—C40—C39 0.4 (6) C13—P1—Rh1—Cl1 24.7 (2)
P3—C35—C40—C39 177.2 (3) C7—P1—Rh1—Cl1 −94.6 (2)
C38—C39—C40—C35 −1.0 (7) C1—P1—Rh1—Cl1 145.30 (19)
C48—C43—C44—C45 0.5 (7) C13—P1—Rh1—Cl1B −156.3 (3)
P4—C43—C44—C45 177.0 (4) C7—P1—Rh1—Cl1B 84.4 (3)
C43—C44—C45—C46 0.3 (8) C1—P1—Rh1—Cl1B −35.7 (3)
C44—C45—C46—C47 −0.3 (8) C21—P2—Rh1—C57B 33.7 (8)
C45—C46—C47—C48 −0.6 (7) C15—P2—Rh1—C57B −86.2 (8)
C46—C47—C48—C43 1.5 (7) C27—P2—Rh1—C57B 154.0 (8)
C44—C43—C48—C47 −1.4 (6) C21—P2—Rh1—C57 −144.7 (4)
P4—C43—C48—C47 −177.9 (3) C15—P2—Rh1—C57 95.5 (4)
C54—C49—C50—C51 −1.3 (8) C27—P2—Rh1—C57 −24.3 (4)
P4—C49—C50—C51 −179.5 (4) C21—P2—Rh1—Cl1 36.3 (2)
C49—C50—C51—C52 2.2 (8) C15—P2—Rh1—Cl1 −83.5 (2)
C50—C51—C52—C53 −1.2 (9) C27—P2—Rh1—Cl1 156.7 (2)
C51—C52—C53—C54 −0.7 (9) C21—P2—Rh1—Cl1B −142.7 (3)
C50—C49—C54—C53 −0.7 (7) C15—P2—Rh1—Cl1B 97.5 (3)
P4—C49—C54—C53 177.5 (4) C27—P2—Rh1—Cl1B −22.3 (3)
C52—C53—C54—C49 1.7 (8) C43—P4—Rh2—C58B −144.0 (4)
C14—C13—P1—C7 −177.9 (3) C55—P4—Rh2—C58 156.3 (5)
C14—C13—P1—C1 −69.1 (4) C49—P4—Rh2—C58 −84.0 (5)
C14—C13—P1—Rh1 58.6 (4) C43—P4—Rh2—C58 35.0 (5)
C8—C7—P1—C13 −160.7 (4) C55—P4—Rh2—Cl2B 158.8 (2)
C12—C7—P1—C13 20.0 (5) C49—P4—Rh2—Cl2B −81.4 (2)
C8—C7—P1—C1 92.4 (4) C43—P4—Rh2—Cl2B 37.5 (2)
C12—C7—P1—C1 −86.8 (4) C55—P4—Rh2—Cl2 −20.8 (2)
C8—C7—P1—Rh1 −34.1 (5) C49—P4—Rh2—Cl2 99.0 (2)
C12—C7—P1—Rh1 146.7 (4) C43—P4—Rh2—Cl2 −142.1 (2)
C2—C1—P1—C13 −83.1 (4) C35—P3—Rh2—C58B −37.8 (4)
C6—C1—P1—C13 93.1 (4) C29—P3—Rh2—C58B 81.2 (4)
C2—C1—P1—C7 24.9 (4) C41—P3—Rh2—C58B −159.5 (4)
C6—C1—P1—C7 −158.9 (4) C35—P3—Rh2—C58 143.2 (5)
C2—C1—P1—Rh1 148.8 (3) C29—P3—Rh2—C58 −97.8 (5)
C6—C1—P1—Rh1 −35.0 (4) C41—P3—Rh2—C58 21.5 (5)
C22—C21—P2—C15 −28.8 (4) C35—P3—Rh2—Cl2B 140.6 (2)
C26—C21—P2—C15 155.6 (4) C29—P3—Rh2—Cl2B −100.3 (2)
C22—C21—P2—C27 79.5 (4) C41—P3—Rh2—Cl2B 19.0 (2)
C26—C21—P2—C27 −96.1 (4) C35—P3—Rh2—Cl2 −39.8 (2)
C22—C21—P2—Rh1 −152.3 (3) C29—P3—Rh2—Cl2 79.2 (2)
C26—C21—P2—Rh1 32.1 (4) C41—P3—Rh2—Cl2 −161.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C22—H22···O2i 0.95 2.64 3.424 (18) 140
C48—H48···O1Bii 0.95 2.68 3.51 (3) 145
C4—H4···O1Biii 0.95 2.71 3.51 (3) 142

Symmetry codes: (i) −x+1, y−1/2, −z+2; (ii) −x+2, y+1/2, −z+2; (iii) −x+2, y−1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2391).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Beck, C. M., Rathmill, S. E., Park, Y. J., Chen, J., Crabtree, R. H., Liable-Sands, L. M. & Rheingold, A. L. (1999). Organometallics, 18, 5311–5317 and references therein.
  3. Bruker (1997). SAINT Version 7.03A. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2003). SADABS Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Higham, L. J., Whittlesey, M. K. & Wood, P. T. (2004). J. Chem. Soc. Dalton Trans. pp. 4202–4208. [DOI] [PubMed]
  9. Hoye, P. A. T., Pringle, P. G., Smith, M. B. & Worboys, K. (1993). J. Chem. Soc. Dalton Trans. pp. 269–274.
  10. Lorenzini, F., Patrick, B. O. & James, B. R. (2007a). J. Chem. Soc. Dalton Trans. pp. 3224–3226. [DOI] [PubMed]
  11. Lorenzini, F., Patrick, B. O. & James, B. R. (2007b). Inorg. Chem.46, 8998–9002. [DOI] [PubMed]
  12. Lorenzini, F., Patrick, B. O. & James, B. R. (2007c). Inorg. Chim. Acta doi: 10.1016/j.ica.2007.10.044. In the press.
  13. O’Connor, C. & Wilkinson, G. (1969). Tetrahedron Lett. pp. 1375–1377.
  14. Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany.
  15. Vallarino, L. (1957). J. Chem. Soc. pp. 2287–2292.
  16. Vaska, L. & Di Luzio, J. W. (1961). J. Am. Chem. Soc.83, 2784–2785.
  17. Vaska, L. & Di Luzio, J. W. (1962). J. Am. Chem. Soc.84, 679–680.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807065877/ng2391sup1.cif

e-64-0m179-sup1.cif (39.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065877/ng2391Isup2.hkl

e-64-0m179-Isup2.hkl (606.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES