Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 18;64(Pt 1):m214. doi: 10.1107/S1600536807063696

Poly[μ2-aqua-μ4-naphthalene-1,8-dicarboxyl­ato-manganese(II)]

Guo-Ying Zhang a,*, Xin Zhang a, Gui-Sheng Yu a
PMCID: PMC2915142  PMID: 21200561

Abstract

The asymmetric unit of the title complex, [Mn(C12H6O4)(H2O)]n, contains one MnII ion, one 1,8-naphthalene­dicarboxyl­ate (1,8-NDC) ligand and one water mol­ecule. The MnII ion is six-coordinated within a distorted octa­hedral coordination geometry, in which the equatorial sites are occupied by four carboxyl­ate O atoms from four different 1,8-NDC ligands, while the axial positions are occupied by two O atoms of two coordinated water mol­ecules. Adjacent MnII centres are bridged by one coordinated water and two carboxyl­ate groups in a synsyn mode to form infinite chains along the b axis, which are further cross-linked by the naphthalene spacers of the 1,8-NDC ligands to produce a two-dimensional extended network.

Related literature

For general background, see: Chen et al. (2005). For related literature, see: Van der Ploeg et al. (1979); Hu et al. 2006.graphic file with name e-64-0m214-scheme1.jpg

Experimental

Crystal data

  • [Mn(C12H6O4)(H2O)]

  • M r = 287.12

  • Monoclinic, Inline graphic

  • a = 15.720 (3) Å

  • b = 7.2167 (14) Å

  • c = 9.837 (2) Å

  • β = 98.87 (3)°

  • V = 1102.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 294 (2) K

  • 0.20 × 0.20 × 0.16 mm

Data collection

  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.794, T max = 0.830

  • 9056 measured reflections

  • 1945 independent reflections

  • 1632 reflections with I > 2σ(I)

  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.089

  • S = 1.09

  • 1945 reflections

  • 171 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807063696/hk2400sup1.cif

e-64-0m214-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063696/hk2400Isup2.hkl

e-64-0m214-Isup2.hkl (95.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Mn1—O2i 2.115 (2)
Mn1—O4 2.122 (2)
Mn1—O1 2.156 (2)
Mn1—O3 2.159 (2)
Mn1—O1W 2.214 (2)
Mn1—O1Wii 2.232 (2)
O2i—Mn1—O4 105.32 (8)
O2i—Mn1—O1 171.04 (8)
O4—Mn1—O1 83.54 (8)
O2i—Mn1—O3 83.67 (8)
O4—Mn1—O3 170.82 (8)
O1—Mn1—O3 87.43 (8)
O2i—Mn1—O1W 90.70 (9)
O4—Mn1—O1W 90.40 (9)
O1—Mn1—O1W 87.88 (9)
O3—Mn1—O1W 87.61 (9)
O2i—Mn1—O1Wii 85.20 (9)
O4—Mn1—O1Wii 86.44 (9)
O1—Mn1—O1Wii 96.86 (8)
O3—Mn1—O1Wii 96.31 (9)
O1W—Mn1—O1Wii 173.97 (6)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Tianjin Normal University for supporting this work.

supplementary crystallographic information

Comment

Aromatic carboxylic derivatives as versatile building blocks not only exhibit great potentials in constructing multi-dimensional networks, but also provide various advantages in producing magnetic molecular assemblies with variable size from discrete molecules to nanometer-scale aggregates and infinite solids (Chen et al., 2005). 1,8-Naphthalenedicarboxylate (1,8-NDC), a rigid multi- carboxylate ligand, is of special interest, since its multiple coordination sites, high symmetry and large conjugated structure can allow to construct molecular assemblies with novel structural motifs and physical properties. However, the metal complex of 1,8-NDC is rare so far (Van der Ploeg et al., 1979; Hu et al., 2006). We herein report the crystal structure of the title manganese complex, (I).

The asymmetric unit of (I) contains one MnII ion, one 1,8-NDC ligand and one water molecule. The MnII ion is six-coordinated within a distorted octahedral coordination geometry. The equatorial sites are occupied by four carboxylate oxygen atoms from different 1,8-NDC ligands, while the axial positions are occupied by two water molecules. The Mn—O distances are within their normal ranges (Table 1). Adjacent MnII centers are bridged by two carboxylate groups and one coordination water to form an infinite one-dimensional chain running along the b axis, in which the carboxylate groups adopt syn-syn bidentate coordination mode (Fig. 2). The intrachain Mn···Mn distance is 3.614 Å. The one-dimensional chains are further cross-linked by the naphthalene spacers of 1,8-NDC to produce a two-dimensional extended network (Fig. 3).

Experimental

For the preparaton of the title complex, a mixture of MnCl2 (1 mmol), 1,8-naphthalenedicarboxylic acid (1 mmol), NaOH (2 mmol) and water (8 ml) in a teflon-lined stainless steel autoclave (15 ml) was kept at 423 K for 2 d. Colorless crystals were obtained after cooling to room temperature (yield; 30%). Anal. Calc. for C12H8MnO5: C 50.20, H 2.81%; Found: 50.56, H 2.52%.

Refinement

H atom (for H2O) were located in a difference sythesis and refined isotropically [O—H = 0.89 (4) and 0.80 (4) Å, Uiso(H) = 0.055 (13) and 0.045 (12) Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [symmetry codes: (A) 2 - x, y - 1/2, 1/2 - z; (B) 2 - x, 1 - y,1 - z; (C) x, 1/2 - y, z - 1/2; (D) 2 - x, 1/2 + y, 1/2 - z].

Fig. 2.

Fig. 2.

A view of the one-dimensional chain in (I).

Fig. 3.

Fig. 3.

The extended two-dimensional layer structure of (I).

Crystal data

[Mn(C12H6O4)(H2O)] F000 = 580
Mr = 287.12 Dx = 1.730 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2641 reflections
a = 15.720 (3) Å θ = 3.1–27.5º
b = 7.2167 (14) Å µ = 1.21 mm1
c = 9.837 (2) Å T = 294 (2) K
β = 98.87 (3)º Block, colourless
V = 1102.6 (4) Å3 0.20 × 0.20 × 0.16 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID-S diffractometer 1945 independent reflections
Radiation source: fine-focus sealed tube 1632 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.058
T = 294(2) K θmax = 25.0º
ω scans θmin = 3.1º
Absorption correction: multi-scan(SADABS; Bruker, 1998) h = −18→18
Tmin = 0.794, Tmax = 0.830 k = −8→8
9056 measured reflections l = −11→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089   w = 1/[σ2(Fo2) + (0.0445P)2] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
1945 reflections Δρmax = 0.85 e Å3
171 parameters Δρmin = −0.33 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.99931 (3) 0.10265 (5) 0.25999 (4) 0.01809 (16)
O1W 0.99998 (17) −0.1557 (3) 0.3815 (2) 0.0211 (5)
H1WA 0.952 (3) −0.169 (5) 0.419 (4) 0.055 (13)*
H1WB 1.041 (3) −0.170 (5) 0.439 (4) 0.045 (12)*
O1 0.90398 (13) 0.2094 (3) 0.3753 (2) 0.0248 (5)
O2 0.89298 (12) 0.5099 (3) 0.3261 (2) 0.0265 (5)
O3 1.09599 (13) 0.2087 (3) 0.4210 (2) 0.0251 (5)
O4 0.89011 (12) 0.0082 (3) 0.1235 (2) 0.0268 (5)
C1 0.86289 (19) 0.3603 (4) 0.3608 (3) 0.0200 (6)
C2 0.76960 (19) 0.3550 (4) 0.3732 (3) 0.0232 (7)
C3 0.7238 (2) 0.2112 (5) 0.3086 (4) 0.0370 (9)
H3 0.7528 0.1119 0.2766 0.044*
C4 0.6336 (2) 0.2110 (6) 0.2897 (4) 0.0509 (11)
H4 0.6032 0.1110 0.2469 0.061*
C5 0.5907 (2) 0.3560 (6) 0.3335 (4) 0.0460 (10)
H5 0.5309 0.3571 0.3169 0.055*
C6 0.63495 (19) 0.5047 (5) 0.4034 (3) 0.0334 (8)
C7 0.5903 (2) 0.6559 (5) 0.4497 (4) 0.0437 (10)
H7 0.5305 0.6576 0.4323 0.052*
C8 0.6326 (2) 0.7975 (6) 0.5184 (4) 0.0501 (10)
H8 0.6021 0.8983 0.5449 0.060*
C9 0.7223 (2) 0.7935 (5) 0.5499 (3) 0.0368 (9)
H9 0.7508 0.8913 0.5990 0.044*
C10 0.7689 (2) 0.6497 (4) 0.5105 (3) 0.0248 (7)
C11 1.13824 (19) 0.3572 (4) 0.4273 (3) 0.0198 (6)
C12 0.72618 (18) 0.5038 (4) 0.4298 (3) 0.0234 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0187 (3) 0.0169 (2) 0.0185 (3) 0.00005 (19) 0.00249 (17) −0.00056 (18)
O1W 0.0221 (13) 0.0214 (11) 0.0194 (12) 0.0009 (9) 0.0017 (10) 0.0025 (8)
O1 0.0230 (12) 0.0284 (12) 0.0234 (12) 0.0067 (10) 0.0048 (9) −0.0014 (9)
O2 0.0246 (12) 0.0283 (13) 0.0282 (12) −0.0030 (10) 0.0091 (9) 0.0008 (9)
O3 0.0230 (12) 0.0288 (12) 0.0232 (12) −0.0073 (10) 0.0026 (9) −0.0045 (9)
O4 0.0240 (12) 0.0282 (13) 0.0264 (12) −0.0009 (9) −0.0023 (9) −0.0033 (9)
C1 0.0205 (17) 0.0268 (17) 0.0128 (14) −0.0021 (13) 0.0027 (11) −0.0038 (12)
C2 0.0192 (17) 0.0269 (17) 0.0234 (16) −0.0011 (12) 0.0029 (12) −0.0009 (13)
C3 0.027 (2) 0.034 (2) 0.050 (2) −0.0056 (15) 0.0051 (16) −0.0138 (16)
C4 0.029 (2) 0.051 (3) 0.070 (3) −0.0170 (18) −0.0015 (19) −0.026 (2)
C5 0.0181 (19) 0.063 (3) 0.055 (2) −0.0063 (17) 0.0005 (16) −0.0129 (19)
C6 0.0208 (19) 0.044 (2) 0.035 (2) 0.0001 (15) 0.0018 (14) −0.0031 (16)
C7 0.0168 (19) 0.057 (3) 0.056 (2) 0.0107 (16) 0.0010 (16) −0.0082 (19)
C8 0.031 (2) 0.052 (3) 0.067 (3) 0.0167 (19) 0.0066 (19) −0.016 (2)
C9 0.026 (2) 0.037 (2) 0.046 (2) 0.0074 (15) −0.0002 (15) −0.0138 (16)
C10 0.0203 (17) 0.0282 (17) 0.0251 (17) 0.0016 (13) 0.0010 (13) 0.0008 (13)
C11 0.0197 (16) 0.0268 (17) 0.0130 (14) 0.0009 (13) 0.0033 (11) −0.0024 (12)
C12 0.0200 (17) 0.0252 (17) 0.0245 (17) −0.0003 (13) 0.0017 (12) 0.0010 (13)

Geometric parameters (Å, °)

Mn1—O2i 2.115 (2) C6—C12 1.418 (4)
Mn1—O4 2.122 (2) C7—C8 1.343 (5)
Mn1—O1 2.156 (2) C7—H7 0.9300
Mn1—O3 2.159 (2) C8—C9 1.396 (5)
Mn1—O1W 2.214 (2) C8—H8 0.9300
Mn1—O1Wii 2.232 (2) C9—C10 1.362 (4)
C1—O2 1.247 (3) C9—H9 0.9300
C1—O1 1.262 (3) C10—C12 1.423 (4)
C1—C2 1.491 (4) C10—C11iii 1.494 (4)
C2—C3 1.364 (4) C11—O4ii 1.252 (3)
C2—C12 1.430 (4) C11—O3 1.257 (3)
C3—C4 1.401 (5) C11—C10iii 1.494 (4)
C3—H3 0.9300 O2—Mn1ii 2.115 (2)
C4—C5 1.350 (5) O4—C11i 1.252 (3)
C4—H4 0.9300 O1W—Mn1i 2.232 (2)
C5—C6 1.400 (5) O1W—H1WA 0.89 (4)
C5—H5 0.9300 O1W—H1WB 0.80 (4)
C6—C7 1.410 (5)
O2i—Mn1—O4 105.32 (8) C5—C6—C12 119.9 (3)
O2i—Mn1—O1 171.04 (8) C7—C6—C12 118.9 (3)
O4—Mn1—O1 83.54 (8) C8—C7—C6 121.3 (3)
O2i—Mn1—O3 83.67 (8) C8—C7—H7 119.4
O4—Mn1—O3 170.82 (8) C6—C7—H7 119.4
O1—Mn1—O3 87.43 (8) C7—C8—C9 120.0 (4)
O2i—Mn1—O1W 90.70 (9) C7—C8—H8 120.0
O4—Mn1—O1W 90.40 (9) C9—C8—H8 120.0
O1—Mn1—O1W 87.88 (9) C10—C9—C8 121.5 (3)
O3—Mn1—O1W 87.61 (9) C10—C9—H9 119.3
O2i—Mn1—O1Wii 85.20 (9) C8—C9—H9 119.3
O4—Mn1—O1Wii 86.44 (9) C9—C10—C12 119.6 (3)
O1—Mn1—O1Wii 96.86 (8) C9—C10—C11iii 116.3 (3)
O3—Mn1—O1Wii 96.31 (9) C12—C10—C11iii 123.4 (3)
O1W—Mn1—O1Wii 173.97 (6) O4ii—C11—O3 124.7 (3)
O2—C1—O1 124.6 (3) O4ii—C11—C10iii 117.3 (3)
O2—C1—C2 117.6 (3) O3—C11—C10iii 117.8 (3)
O1—C1—C2 117.5 (3) C6—C12—C10 118.4 (3)
C3—C2—C12 120.2 (3) C6—C12—C2 117.5 (3)
C3—C2—C1 115.9 (3) C10—C12—C2 124.0 (3)
C12—C2—C1 123.2 (3) C1—O1—Mn1 129.36 (18)
C2—C3—C4 120.9 (3) C1—O2—Mn1ii 138.1 (2)
C2—C3—H3 119.6 C11—O3—Mn1 130.17 (19)
C4—C3—H3 119.6 C11i—O4—Mn1 137.39 (19)
C5—C4—C3 120.1 (3) Mn1—O1W—Mn1i 108.74 (9)
C5—C4—H4 120.0 Mn1—O1W—H1WA 112 (2)
C3—C4—H4 120.0 Mn1i—O1W—H1WA 105 (2)
C4—C5—C6 121.1 (3) Mn1—O1W—H1WB 115 (3)
C4—C5—H5 119.5 Mn1i—O1W—H1WB 105 (3)
C6—C5—H5 119.5 H1WA—O1W—H1WB 110 (4)
C5—C6—C7 121.2 (3)
O2—C1—C2—C3 131.1 (3) C1—C2—C12—C6 163.6 (3)
O1—C1—C2—C3 −43.2 (4) C3—C2—C12—C10 173.6 (3)
O2—C1—C2—C12 −39.4 (4) C1—C2—C12—C10 −16.3 (5)
O1—C1—C2—C12 146.3 (3) O2—C1—O1—Mn1 −35.5 (4)
C12—C2—C3—C4 3.5 (5) C2—C1—O1—Mn1 138.5 (2)
C1—C2—C3—C4 −167.3 (3) O4—Mn1—O1—C1 −84.6 (2)
C2—C3—C4—C5 1.2 (6) O3—Mn1—O1—C1 97.1 (2)
C3—C4—C5—C6 −2.8 (6) O1W—Mn1—O1—C1 −175.2 (2)
C4—C5—C6—C7 −179.8 (4) O1Wii—Mn1—O1—C1 1.0 (3)
C4—C5—C6—C12 −0.4 (6) O1—C1—O2—Mn1ii 14.5 (5)
C5—C6—C7—C8 179.1 (4) C2—C1—O2—Mn1ii −159.4 (2)
C12—C6—C7—C8 −0.3 (6) O4ii—C11—O3—Mn1 34.3 (4)
C6—C7—C8—C9 −2.5 (6) C10iii—C11—O3—Mn1 −140.3 (2)
C7—C8—C9—C10 1.2 (6) O2i—Mn1—O3—C11 83.3 (2)
C8—C9—C10—C12 2.9 (5) O1—Mn1—O3—C11 −97.7 (3)
C8—C9—C10—C11iii −168.6 (3) O1W—Mn1—O3—C11 174.3 (3)
C5—C6—C12—C10 −175.1 (3) O1Wii—Mn1—O3—C11 −1.1 (3)
C7—C6—C12—C10 4.3 (5) O2i—Mn1—O4—C11i 55.2 (3)
C5—C6—C12—C2 4.9 (5) O1—Mn1—O4—C11i −123.4 (3)
C7—C6—C12—C2 −175.7 (3) O1W—Mn1—O4—C11i −35.6 (3)
C9—C10—C12—C6 −5.6 (5) O1Wii—Mn1—O4—C11i 139.2 (3)
C11iii—C10—C12—C6 165.3 (3) O2i—Mn1—O1W—Mn1i −52.06 (11)
C9—C10—C12—C2 174.4 (3) O4—Mn1—O1W—Mn1i 53.27 (11)
C11iii—C10—C12—C2 −14.7 (5) O1—Mn1—O1W—Mn1i 136.79 (11)
C3—C2—C12—C6 −6.5 (4) O3—Mn1—O1W—Mn1i −135.70 (11)

Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+2, y+1/2, −z+1/2; (iii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2400).

References

  1. Bruker (1998). SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chen, L. F., Zhang, J., Song, L. J. & Ju, Z. F. (2005). Inorg. Chem. Commun.8, 555–558.
  3. Hu, T. L., Li, J. R., Liu, C. S., Shi, X. S., Zhou, J. N., Bu, X. H. & Ribas, J. (2006). Inorg. Chem.45, 162–173. [DOI] [PubMed]
  4. Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  5. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  6. Van der Ploeg, A. F. M. J., Van Koten, G. & Spek, A. L. (1979). Inorg. Chem.18, 1052–1060.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807063696/hk2400sup1.cif

e-64-0m214-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063696/hk2400Isup2.hkl

e-64-0m214-Isup2.hkl (95.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES