Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 21;64(Pt 1):m230–m231. doi: 10.1107/S160053680706672X

(1,10-Phenanthroline-κ2 N,N′)bis­(2,2,6,6-tetra­methyl­heptane-3,5-dionato-κ2 O,O′)nickel(II)

Branko Kaitner a, Krešo Mesarek a, Ernest Meštrović b,*
PMCID: PMC2915153  PMID: 21200575

Abstract

The title compound, [Ni(C11H19O2)2(C12H8N2)], was obtained from the reaction of bis­(2,2,6,6-tetra­methyl­heptane-3,5-dionato)nickel(II), [Ni(dpm)], and 1,10-phenanthroline (phen). The NiII ion is coordinated by four O atoms from two dpm ligands and two N atoms from a phen ligand in a slightly distorted octa­hedral environment. The methyl C atoms of two of the tert-butyl groups are disordered over two sites, having approximate occupancies of 0.85 and 0.15 for the two components. In the crystal structure, there are no direction-specific inter­actions. Thermal studies showed that the title complex is stable to 623 K.

Related literature

For information on the synthetic procedure, see: Meštrović & Kaitner (2006). For information regarding the application of metal complexes with β-diketones, see: Soldatov et al. (1999, 2001, 2002, 2003); Soldatov & Ripmeester (2001a ,b ). For similar metal(II) (β-diketonates)2 as well as for the properties of neutral mol­ecules which form different types of supra­molecular assemblies, see: Bučar & Meštrović (2003); Meštrović et al. (2004); Meštrović & Kaitner (2006). For the crystal and mol­ecular structure of bis­(2,2,6,6-tetra­methyl­heptane-3,5-dionato)nickel(II), see: Cotton & Wise (1965). For the crystal and mol­ecular structure of bis(acetyl­acetonato)-1,10-phenanthroline-nickel(II), see: Steblyanko et al. (1992).

For related literature, see: Allen (2002); Kaitner & Meštrović (1993).graphic file with name e-64-0m230-scheme1.jpg

Experimental

Crystal data

  • [Ni(C11H19O2)2(C12H8N2)]

  • M r = 605.44

  • Triclinic, Inline graphic

  • a = 10.054 (2) Å

  • b = 10.386 (3) Å

  • c = 16.717 (2) Å

  • α = 89.69 (2)°

  • β = 83.48 (2)°

  • γ = 79.63 (3)°

  • V = 1705.8 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 293 (2) K

  • 0.60 × 0.60 × 0.30 mm

Data collection

  • Philips PW1100 diffractometer with Stoe upgrade

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.65, T max = 0.83

  • 7711 measured reflections

  • 7451 independent reflections

  • 5139 reflections with I > 2σ(I)

  • R int = 0.033

  • 3 standard reflections frequency: 90 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.131

  • S = 1.02

  • 7451 reflections

  • 432 parameters

  • 69 restraints

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: STADI4 (Stoe & Cie, 1994); cell refinement: X-RED (Stoe & Cie, 1994); data reduction: X-RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680706672X/lh2569sup1.cif

e-64-0m230-sup1.cif (29.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706672X/lh2569Isup2.hkl

e-64-0m230-Isup2.hkl (357.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni—O12 2.0110 (18)
Ni—O21 2.0176 (18)
Ni—O11 2.0304 (18)
Ni—O22 2.0320 (18)
Ni—N32 2.089 (2)
Ni—N31 2.094 (2)

Acknowledgments

Financial support of this research by the Ministry of Science, Education and Sport, Republic of Croatia, through grant No. 0119630, is gratefully acknowledged.

supplementary crystallographic information

Comment

As part of our research of the study of metal β-diketonates complexes we have prepared the title compound by reaction of bis(2,2,6,6-tetramethyl-3,5-heptanedionato-κ2 O,O') nickel(II) with 1,10 phenantroline (Bučar and Meštrović, 2003, Meštrović et al., 2004, Meštrović and Kaitner 2006). After the work by Soldatov and his group this material was recognized as a smart sorbent and as a functional organic zeolite analogue (Soldatov et al., 1999, 2001, 2002, 2003; Soldatov & Ripmeester, 2001a,b).

Another very important field of application is based on the thermal stability and volatility of metal β-dionates which makes them important precursors in production of high temperature supraconductors using technique of metal organic chemical vapour deposition (MOCVD). Based on molecular structural properties of metal(II)(β-diketonates) 2 as well as on properties of neutral molecules we can obtain different properties of materials. Necesssary prerequisites of source precursors for any MOCVD proces are thermal stability, sufficient and stable evaporation, and good delivery properties under process conditions. The success of a potential compound, mostly depends on the properties of molecular precursors, since their nature and architecture both make the quality of materials. Nevertheless, relationships between the precursor molecular architectures and their properties still remain a challenge in the area of materials science.

The reason for using 2,2,6,6-tetramethyl-3,5-heptanedion (dipivaoilmethan, Hdpm) was the non-polar property of tert-butyl groups in the title molecule giving no possibility for interaction between molecules of complex. This fact is very important in preparation of material for metal organic chemical vapor deposition. We introduced 1,10 phenantroline as aditional part for achiving thermal stability of the substance.

We obtained the adduct molecule through reaction of bis(dipivaloimethan)nickel(II) with 1,10-phenantroline. The NiII ion is in a slightly distorted octahedral environment formed by two dipivaloilmethanate ligands and one 1, 10-phenantroline ligand. The Ni—O bond distances range from 2.012 (2) Å to 2.033 (2) Å and are longer than the bond distances found in the free Ni(dpm)2 complex (Cotton & Wise, 1965) which range from 1.839 Å to 1.844 Å. All other bond distances are similar to all other compounds in this class (Allen, 2002).

Experimental

Bis(2,2,6,6-tetramethyl-3,5-heptanedionato-κ2 O,O') (1,10-phenanthroline-κ2N,N')nickel(II) was prepared by the published method (Meštrović and Kaitner, 2006). 1 mmol (190 mg) of phenantroline was disoved in 10 ml of acetone. 1 mmol (415 mg) of bis(2,2,6,6-tetramethyl-3,5-heptanedionato-κ2 O,O') nickel(II) was added to a warm solution of phenantroline. Green crystals were obtained overnight. The crystal suitable for single-crystal X– ray diffraction was obtained by evaporation of diluted acetone solution of the title compound over two weeks.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distance from 0.93 to 0.96 Å. They were treated as riding atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl C atoms. The methyl groups on atoms C18 and C24 are disordered over two sites with the ratio of the refined occupancies being 0.853 (7):0.147 (7) and 0.846 (7): 0.154 (7), respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title complex showing the numbering sheme and displacement ellipsoids drawn at the 30% probability level. The H atoms have been omitted for clarity.

Crystal data

[Ni(C11H19O2)2(C12H8N2)] Z = 2
Mr = 605.44 F000 = 648
Triclinic, P1 Dx = 1.179 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 10.054 (2) Å Cell parameters from 25 reflections
b = 10.386 (3) Å θ = 10–15º
c = 16.717 (2) Å µ = 0.61 mm1
α = 89.69 (2)º T = 293 (2) K
β = 83.48 (2)º Prism, green
γ = 79.63 (3)º 0.60 × 0.60 × 0.30 mm
V = 1705.8 (7) Å3

Data collection

Philips Stoe upgrade diffractometer Rint = 0.033
Radiation source: fine-focus sealed tube θmax = 27.0º
Monochromator: graphite θmin = 2.1º
T = 293(2) K h = −12→12
ω scans k = −13→13
Absorption correction: ψ scan(North et al., 1968) l = 0→21
Tmin = 0.65, Tmax = 0.83 3 standard reflections
7711 measured reflections every 90 min
7451 independent reflections intensity decay: 1%
5139 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.131   w = 1/[σ2(Fo2) + (0.0711P)2 + 0.3734P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
7451 reflections Δρmax = 0.64 e Å3
432 parameters Δρmin = −0.38 e Å3
69 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Disorder was refined with restraints on bond distances of both orientations and on ADPs of atoms of the minor orientation. Occupancie of minor orientations of both t-buthyl residues refined to 0.85

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni 0.32575 (3) 0.31322 (3) 0.188562 (17) 0.04550 (12)
O11 0.47578 (17) 0.18444 (17) 0.23263 (10) 0.0548 (4)
O12 0.19611 (17) 0.27128 (19) 0.28160 (10) 0.0608 (5)
O21 0.38533 (17) 0.45956 (17) 0.24617 (10) 0.0576 (4)
O22 0.17421 (17) 0.44893 (17) 0.15129 (10) 0.0545 (4)
N31 0.2711 (2) 0.1796 (2) 0.11057 (13) 0.0560 (5)
N32 0.4651 (2) 0.3236 (2) 0.08706 (12) 0.0525 (5)
C11 0.4787 (2) 0.1676 (2) 0.30770 (14) 0.0493 (6)
C12 0.3645 (3) 0.1894 (3) 0.36497 (16) 0.0616 (7)
H12 0.3790 0.1724 0.4183 0.074*
C13 0.2307 (3) 0.2343 (3) 0.34972 (16) 0.0558 (6)
C14 0.1124 (3) 0.2384 (3) 0.41701 (18) 0.0710 (8)
C19 −0.0004 (4) 0.3504 (4) 0.4040 (3) 0.1095 (15)
H19A −0.0309 0.3401 0.3524 0.164*
H19B 0.0325 0.4314 0.4058 0.164*
H19C −0.0749 0.3511 0.4455 0.164*
C110 0.1533 (5) 0.2546 (7) 0.5014 (2) 0.161 (3)
H11A 0.1994 0.3278 0.5022 0.241*
H11B 0.2129 0.1766 0.5150 0.241*
H11C 0.0734 0.2696 0.5398 0.241*
C111 0.0592 (5) 0.1104 (4) 0.4104 (3) 0.136 (2)
H11D −0.0230 0.1141 0.4464 0.204*
H11E 0.1264 0.0386 0.4247 0.204*
H11F 0.0408 0.0981 0.3562 0.204*
C18 0.6206 (3) 0.1182 (3) 0.33414 (16) 0.0650 (7)
C15 0.7313 (4) 0.1426 (8) 0.2697 (3) 0.133 (3) 0.853 (7)
H15A 0.7289 0.2351 0.2648 0.200* 0.853 (7)
H15B 0.7168 0.1069 0.2192 0.200* 0.853 (7)
H15C 0.8184 0.1013 0.2842 0.200* 0.853 (7)
C16 0.6370 (5) 0.1701 (8) 0.4154 (3) 0.123 (3) 0.853 (7)
H16A 0.7239 0.1300 0.4308 0.184* 0.853 (7)
H16B 0.5659 0.1502 0.4542 0.184* 0.853 (7)
H16C 0.6318 0.2632 0.4130 0.184* 0.853 (7)
C17 0.6373 (6) −0.0320 (4) 0.3389 (4) 0.118 (2) 0.853 (7)
H17A 0.7277 −0.0678 0.3507 0.176* 0.853 (7)
H17B 0.6224 −0.0668 0.2882 0.176* 0.853 (7)
H17C 0.5723 −0.0548 0.3806 0.176* 0.853 (7)
C15A 0.704 (2) 0.008 (2) 0.2823 (16) 0.091 (8) 0.147 (7)
H15D 0.7168 0.0361 0.2276 0.136* 0.147 (7)
H15E 0.6584 −0.0657 0.2847 0.136* 0.147 (7)
H15F 0.7917 −0.0174 0.3016 0.136* 0.147 (7)
C16A 0.675 (2) 0.2465 (13) 0.338 (2) 0.092 (9) 0.147 (7)
H16D 0.6111 0.3086 0.3717 0.138* 0.147 (7)
H16E 0.6865 0.2809 0.2845 0.138* 0.147 (7)
H16F 0.7607 0.2303 0.3593 0.138* 0.147 (7)
C17A 0.616 (4) 0.066 (4) 0.4195 (11) 0.125 (12) 0.147 (7)
H17D 0.5637 0.1319 0.4562 0.187* 0.147 (7)
H17E 0.7064 0.0427 0.4341 0.187* 0.147 (7)
H17F 0.5734 −0.0102 0.4221 0.187* 0.147 (7)
C21 0.3059 (3) 0.5620 (2) 0.27442 (15) 0.0534 (6)
C22 0.1754 (3) 0.6046 (3) 0.25292 (16) 0.0587 (6)
H22 0.1232 0.6775 0.2803 0.070*
C23 0.1162 (2) 0.5474 (3) 0.19387 (16) 0.0540 (6)
C24 −0.0296 (3) 0.6042 (3) 0.1747 (2) 0.0749 (8)
C25 −0.1095 (5) 0.4912 (5) 0.1775 (4) 0.124 (2) 0.846 (7)
H25A −0.0608 0.4213 0.1424 0.186* 0.846 (7)
H25B −0.1975 0.5216 0.1602 0.186* 0.846 (7)
H25C −0.1203 0.4599 0.2316 0.186* 0.846 (7)
C26 −0.1031 (6) 0.7154 (8) 0.2291 (5) 0.171 (4) 0.846 (7)
H26A −0.0513 0.7847 0.2265 0.256* 0.846 (7)
H26B −0.1140 0.6852 0.2834 0.256* 0.846 (7)
H26C −0.1910 0.7472 0.2121 0.256* 0.846 (7)
C27 −0.0206 (5) 0.6481 (6) 0.0866 (3) 0.112 (2) 0.846 (7)
H27A 0.0272 0.5766 0.0524 0.168* 0.846 (7)
H27B 0.0275 0.7201 0.0808 0.168* 0.846 (7)
H27C −0.1106 0.6749 0.0715 0.168* 0.846 (7)
C25A −0.1224 (17) 0.602 (3) 0.2530 (9) 0.100 (9) 0.154 (7)
H25D −0.0859 0.6418 0.2953 0.149* 0.154 (7)
H25E −0.1284 0.5132 0.2664 0.149* 0.154 (7)
H25F −0.2115 0.6500 0.2466 0.149* 0.154 (7)
C26A −0.024 (2) 0.7462 (13) 0.1521 (18) 0.103 (10) 0.154 (7)
H26D 0.0126 0.7878 0.1937 0.155* 0.154 (7)
H26E −0.1138 0.7922 0.1461 0.155* 0.154 (7)
H26F 0.0335 0.7478 0.1022 0.155* 0.154 (7)
C27A −0.088 (3) 0.537 (3) 0.1105 (14) 0.174 (18) 0.154 (7)
H27D −0.0313 0.5382 0.0602 0.261* 0.154 (7)
H27E −0.1781 0.5826 0.1049 0.261* 0.154 (7)
H27F −0.0906 0.4484 0.1255 0.261* 0.154 (7)
C28 0.3632 (3) 0.6349 (3) 0.33910 (17) 0.0654 (7)
C29 0.5132 (4) 0.6332 (4) 0.3144 (3) 0.1026 (13)
H29A 0.5242 0.6805 0.2653 0.154*
H29B 0.5598 0.5443 0.3061 0.154*
H29C 0.5505 0.6736 0.3560 0.154*
C210 0.2912 (4) 0.7776 (4) 0.3525 (3) 0.1086 (14)
H21A 0.1959 0.7802 0.3685 0.163*
H21B 0.3028 0.8248 0.3035 0.163*
H21C 0.3298 0.8170 0.3941 0.163*
C211 0.3453 (5) 0.5590 (4) 0.4167 (2) 0.1189 (16)
H21D 0.2502 0.5603 0.4323 0.178*
H21E 0.3828 0.5989 0.4585 0.178*
H21F 0.3917 0.4702 0.4081 0.178*
C31 0.1742 (3) 0.1101 (3) 0.1235 (2) 0.0767 (9)
H31 0.1214 0.1172 0.1732 0.092*
C32 0.1474 (4) 0.0242 (3) 0.0637 (3) 0.1010 (14)
H32 0.0774 −0.0234 0.0737 0.121*
C33 0.2274 (5) 0.0131 (4) −0.0090 (3) 0.1017 (14)
H33 0.2124 −0.0437 −0.0484 0.122*
C34 0.3290 (4) 0.0847 (3) −0.0242 (2) 0.0793 (10)
C35 0.4177 (5) 0.0771 (4) −0.0982 (2) 0.0993 (15)
H35 0.4077 0.0204 −0.1390 0.119*
C36 0.5151 (5) 0.1505 (4) −0.1092 (2) 0.1042 (15)
H36 0.5706 0.1435 −0.1580 0.125*
C37 0.5365 (4) 0.2388 (3) −0.04893 (16) 0.0776 (10)
C38 0.6382 (4) 0.3153 (4) −0.0552 (2) 0.0914 (12)
H38 0.6952 0.3150 −0.1031 0.110*
C39 0.6542 (4) 0.3892 (4) 0.0073 (2) 0.0899 (11)
H39 0.7234 0.4383 0.0037 0.108*
C40 0.5653 (3) 0.3912 (3) 0.07798 (19) 0.0673 (7)
H40 0.5772 0.4428 0.1210 0.081*
C41 0.4507 (3) 0.2462 (3) 0.02516 (14) 0.0573 (7)
C42 0.3466 (3) 0.1692 (3) 0.03745 (15) 0.0587 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni 0.04364 (17) 0.05020 (19) 0.04083 (17) −0.00254 (12) −0.00597 (11) −0.00931 (12)
O11 0.0509 (9) 0.0640 (11) 0.0451 (9) 0.0042 (8) −0.0091 (7) −0.0107 (8)
O12 0.0456 (9) 0.0842 (13) 0.0509 (10) −0.0075 (9) −0.0059 (8) 0.0050 (9)
O21 0.0495 (9) 0.0628 (11) 0.0581 (10) −0.0014 (8) −0.0083 (8) −0.0225 (9)
O22 0.0506 (9) 0.0561 (10) 0.0542 (10) 0.0022 (8) −0.0126 (8) −0.0091 (8)
N31 0.0580 (12) 0.0483 (12) 0.0629 (13) −0.0033 (10) −0.0217 (10) −0.0053 (10)
N32 0.0549 (12) 0.0519 (11) 0.0459 (11) 0.0018 (10) −0.0038 (9) −0.0046 (9)
C11 0.0517 (13) 0.0476 (13) 0.0486 (13) −0.0042 (10) −0.0127 (11) −0.0071 (10)
C12 0.0579 (15) 0.0799 (19) 0.0461 (14) −0.0070 (14) −0.0107 (12) 0.0061 (13)
C13 0.0569 (15) 0.0591 (15) 0.0511 (14) −0.0116 (12) −0.0026 (11) −0.0006 (12)
C14 0.0606 (17) 0.086 (2) 0.0623 (17) −0.0110 (15) 0.0045 (13) 0.0150 (15)
C19 0.089 (3) 0.110 (3) 0.105 (3) 0.016 (2) 0.041 (2) 0.015 (2)
C110 0.095 (3) 0.324 (8) 0.054 (2) −0.028 (4) 0.015 (2) 0.008 (3)
C111 0.101 (3) 0.097 (3) 0.198 (5) −0.025 (3) 0.046 (3) 0.018 (3)
C18 0.0557 (15) 0.082 (2) 0.0572 (16) −0.0018 (14) −0.0208 (12) −0.0065 (14)
C15 0.054 (2) 0.255 (9) 0.098 (4) −0.041 (4) −0.021 (2) 0.029 (5)
C16 0.079 (3) 0.182 (6) 0.102 (4) 0.014 (3) −0.045 (3) −0.075 (4)
C17 0.108 (4) 0.092 (3) 0.144 (5) 0.032 (3) −0.054 (4) −0.012 (3)
C15A 0.055 (11) 0.101 (15) 0.113 (16) −0.003 (11) −0.014 (11) 0.011 (13)
C16A 0.053 (11) 0.084 (14) 0.148 (19) −0.007 (9) −0.055 (12) 0.013 (13)
C17A 0.113 (14) 0.142 (15) 0.121 (14) −0.010 (9) −0.041 (9) 0.012 (10)
C21 0.0569 (14) 0.0541 (14) 0.0478 (13) −0.0118 (12) 0.0043 (11) −0.0123 (11)
C22 0.0529 (14) 0.0543 (15) 0.0629 (16) 0.0022 (11) 0.0009 (12) −0.0140 (12)
C23 0.0478 (13) 0.0547 (15) 0.0558 (14) −0.0023 (11) −0.0012 (11) 0.0009 (12)
C24 0.0518 (16) 0.079 (2) 0.088 (2) 0.0073 (14) −0.0120 (15) −0.0029 (17)
C25 0.059 (3) 0.138 (5) 0.184 (7) −0.029 (3) −0.035 (3) 0.019 (4)
C26 0.087 (4) 0.182 (7) 0.215 (8) 0.075 (4) −0.049 (5) −0.112 (6)
C27 0.081 (3) 0.133 (5) 0.119 (4) 0.006 (3) −0.039 (3) 0.030 (4)
C25A 0.034 (9) 0.132 (17) 0.114 (15) 0.027 (11) 0.002 (9) 0.030 (14)
C26A 0.057 (11) 0.116 (16) 0.132 (18) 0.005 (10) −0.023 (11) 0.065 (14)
C27A 0.17 (2) 0.18 (2) 0.18 (2) −0.001 (17) −0.061 (18) −0.010 (18)
C28 0.0764 (19) 0.0622 (17) 0.0590 (16) −0.0174 (14) −0.0045 (14) −0.0214 (13)
C29 0.084 (2) 0.107 (3) 0.125 (3) −0.033 (2) −0.021 (2) −0.043 (2)
C210 0.122 (3) 0.078 (2) 0.125 (3) −0.006 (2) −0.026 (3) −0.053 (2)
C211 0.197 (5) 0.114 (3) 0.057 (2) −0.052 (3) −0.021 (3) −0.021 (2)
C31 0.074 (2) 0.0637 (18) 0.099 (2) −0.0155 (16) −0.0317 (18) −0.0010 (17)
C32 0.101 (3) 0.067 (2) 0.152 (4) −0.024 (2) −0.070 (3) 0.000 (2)
C33 0.131 (4) 0.068 (2) 0.109 (3) 0.010 (2) −0.073 (3) −0.024 (2)
C34 0.103 (2) 0.0591 (17) 0.075 (2) 0.0149 (17) −0.0519 (19) −0.0184 (15)
C35 0.136 (4) 0.092 (3) 0.0541 (19) 0.043 (2) −0.047 (2) −0.0327 (18)
C36 0.131 (4) 0.115 (3) 0.0415 (16) 0.048 (3) −0.016 (2) −0.0148 (19)
C37 0.095 (2) 0.077 (2) 0.0420 (14) 0.0336 (18) −0.0055 (14) −0.0010 (14)
C38 0.084 (2) 0.102 (3) 0.070 (2) 0.014 (2) 0.0207 (18) 0.022 (2)
C39 0.075 (2) 0.088 (2) 0.096 (3) −0.0022 (18) 0.0172 (19) 0.017 (2)
C40 0.0575 (16) 0.0669 (18) 0.0730 (19) −0.0047 (14) 0.0008 (14) 0.0042 (14)
C41 0.0665 (16) 0.0555 (15) 0.0408 (13) 0.0153 (13) −0.0096 (11) −0.0011 (11)
C42 0.0735 (17) 0.0507 (14) 0.0461 (14) 0.0158 (13) −0.0253 (12) −0.0097 (11)

Geometric parameters (Å, °)

Ni—O12 2.0110 (18) C22—H22 0.9300
Ni—O21 2.0176 (18) C23—C24 1.547 (4)
Ni—O11 2.0304 (18) C24—C26 1.502 (5)
Ni—O22 2.0320 (18) C24—C27A 1.508 (8)
Ni—N32 2.089 (2) C24—C25A 1.520 (8)
Ni—N31 2.094 (2) C24—C26A 1.531 (8)
O11—C11 1.269 (3) C24—C25 1.535 (5)
O12—C13 1.266 (3) C24—C27 1.537 (5)
O21—C21 1.268 (3) C25—H25A 0.9600
O22—C23 1.262 (3) C25—H25B 0.9600
N31—C31 1.312 (4) C25—H25C 0.9600
N31—C42 1.358 (3) C26—H26A 0.9600
N32—C40 1.323 (4) C26—H26B 0.9600
N32—C41 1.350 (3) C26—H26C 0.9600
C11—C12 1.395 (4) C27—H27A 0.9600
C11—C18 1.539 (3) C27—H27B 0.9600
C12—C13 1.394 (4) C27—H27C 0.9600
C12—H12 0.9300 C25A—H25D 0.9600
C13—C14 1.537 (4) C25A—H25E 0.9600
C14—C19 1.505 (4) C25A—H25F 0.9600
C14—C111 1.528 (5) C26A—H26D 0.9600
C14—C110 1.532 (5) C26A—H26E 0.9600
C19—H19A 0.9600 C26A—H26F 0.9600
C19—H19B 0.9600 C27A—H27D 0.9600
C19—H19C 0.9600 C27A—H27E 0.9600
C110—H11A 0.9600 C27A—H27F 0.9600
C110—H11B 0.9600 C28—C29 1.515 (5)
C110—H11C 0.9600 C28—C211 1.523 (5)
C111—H11D 0.9600 C28—C210 1.533 (4)
C111—H11E 0.9600 C29—H29A 0.9600
C111—H11F 0.9600 C29—H29B 0.9600
C18—C16 1.501 (4) C29—H29C 0.9600
C18—C15A 1.508 (9) C210—H21A 0.9600
C18—C15 1.513 (5) C210—H21B 0.9600
C18—C17A 1.524 (9) C210—H21C 0.9600
C18—C16A 1.531 (9) C211—H21D 0.9600
C18—C17 1.541 (5) C211—H21E 0.9600
C15—H15A 0.9600 C211—H21F 0.9600
C15—H15B 0.9600 C31—C32 1.423 (5)
C15—H15C 0.9600 C31—H31 0.9300
C16—H16A 0.9600 C32—C33 1.373 (6)
C16—H16B 0.9600 C32—H32 0.9300
C16—H16C 0.9600 C33—C34 1.368 (6)
C17—H17A 0.9600 C33—H33 0.9300
C17—H17B 0.9600 C34—C42 1.405 (4)
C17—H17C 0.9600 C34—C35 1.433 (6)
C15A—H15D 0.9600 C35—C36 1.341 (6)
C15A—H15E 0.9600 C35—H35 0.9300
C15A—H15F 0.9600 C36—C37 1.427 (5)
C16A—H16D 0.9600 C36—H36 0.9300
C16A—H16E 0.9600 C37—C38 1.398 (5)
C16A—H16F 0.9600 C37—C41 1.421 (4)
C17A—H17D 0.9600 C38—C39 1.341 (5)
C17A—H17E 0.9600 C38—H38 0.9300
C17A—H17F 0.9600 C39—C40 1.395 (4)
C21—C22 1.393 (4) C39—H39 0.9300
C21—C28 1.543 (3) C40—H40 0.9300
C22—C23 1.396 (4) C41—C42 1.424 (4)
O12—Ni—O21 95.30 (8) C26—C24—C25A 50.1 (9)
O12—Ni—O11 88.56 (7) C27A—C24—C25A 107.9 (9)
O21—Ni—O11 89.12 (7) C26—C24—C26A 59.3 (9)
O12—Ni—O22 89.61 (8) C27A—C24—C26A 110.4 (9)
O21—Ni—O22 87.79 (7) C25A—C24—C26A 109.3 (8)
O11—Ni—O22 176.25 (6) C26—C24—C25 110.9 (5)
O12—Ni—N32 170.45 (8) C27A—C24—C25 47.6 (12)
O21—Ni—N32 92.88 (8) C25A—C24—C25 67.2 (10)
O11—Ni—N32 86.63 (8) C26A—C24—C25 147.6 (8)
O22—Ni—N32 95.65 (8) C26—C24—C27 110.2 (4)
O12—Ni—N31 93.42 (9) C27A—C24—C27 57.6 (11)
O21—Ni—N31 170.00 (8) C25A—C24—C27 145.5 (8)
O11—Ni—N31 95.99 (8) C26A—C24—C27 58.3 (11)
O22—Ni—N31 87.38 (8) C25—C24—C27 105.1 (4)
N32—Ni—N31 78.89 (9) C26—C24—C23 114.6 (3)
C11—O11—Ni 121.76 (15) C27A—C24—C23 118.4 (14)
C13—O12—Ni 124.30 (17) C25A—C24—C23 106.4 (8)
C21—O21—Ni 124.38 (16) C26A—C24—C23 104.2 (8)
C23—O22—Ni 122.52 (16) C25—C24—C23 107.6 (3)
C31—N31—C42 118.4 (3) C27—C24—C23 108.0 (3)
C31—N31—Ni 128.4 (2) C24—C25—H25A 109.5
C42—N31—Ni 113.25 (18) C24—C25—H25B 109.5
C40—N32—C41 117.9 (2) H25A—C25—H25B 109.5
C40—N32—Ni 128.40 (19) C24—C25—H25C 109.5
C41—N32—Ni 113.63 (19) H25A—C25—H25C 109.5
O11—C11—C12 124.6 (2) H25B—C25—H25C 109.5
O11—C11—C18 115.5 (2) C24—C26—H26A 109.5
C12—C11—C18 119.9 (2) C24—C26—H26B 109.5
C13—C12—C11 126.1 (2) H26A—C26—H26B 109.5
C13—C12—H12 117.0 C24—C26—H26C 109.5
C11—C12—H12 117.0 H26A—C26—H26C 109.5
O12—C13—C12 124.4 (2) H26B—C26—H26C 109.5
O12—C13—C14 115.1 (2) C24—C27—H27A 109.5
C12—C13—C14 120.6 (2) C24—C27—H27B 109.5
C19—C14—C111 108.5 (3) H27A—C27—H27B 109.5
C19—C14—C110 107.9 (4) C24—C27—H27C 109.5
C111—C14—C110 110.4 (4) H27A—C27—H27C 109.5
C19—C14—C13 109.9 (2) H27B—C27—H27C 109.5
C111—C14—C13 106.7 (3) C24—C25A—H25D 109.5
C110—C14—C13 113.4 (3) C24—C25A—H25E 109.5
C14—C19—H19A 109.5 H25D—C25A—H25E 109.5
C14—C19—H19B 109.5 C24—C25A—H25F 109.5
H19A—C19—H19B 109.5 H25D—C25A—H25F 109.5
C14—C19—H19C 109.5 H25E—C25A—H25F 109.5
H19A—C19—H19C 109.5 C24—C26A—H26D 109.5
H19B—C19—H19C 109.5 C24—C26A—H26E 109.5
C14—C110—H11A 109.5 H26D—C26A—H26E 109.5
C14—C110—H11B 109.5 C24—C26A—H26F 109.5
H11A—C110—H11B 109.5 H26D—C26A—H26F 109.5
C14—C110—H11C 109.5 H26E—C26A—H26F 109.5
H11A—C110—H11C 109.5 C24—C27A—H27D 109.5
H11B—C110—H11C 109.5 C24—C27A—H27E 109.5
C14—C111—H11D 109.5 H27D—C27A—H27E 109.5
C14—C111—H11E 109.5 C24—C27A—H27F 109.5
H11D—C111—H11E 109.5 H27D—C27A—H27F 109.5
C14—C111—H11F 109.5 H27E—C27A—H27F 109.5
H11D—C111—H11F 109.5 C29—C28—C211 109.6 (3)
H11E—C111—H11F 109.5 C29—C28—C210 108.5 (3)
C16—C18—C15A 131.7 (11) C211—C28—C210 109.8 (3)
C16—C18—C15 112.7 (4) C29—C28—C21 109.2 (2)
C15A—C18—C15 58.8 (12) C211—C28—C21 106.3 (2)
C16—C18—C17A 44.4 (16) C210—C28—C21 113.4 (3)
C15A—C18—C17A 104.9 (19) C28—C29—H29A 109.5
C15—C18—C17A 135.8 (14) C28—C29—H29B 109.5
C16—C18—C16A 62.1 (12) H29A—C29—H29B 109.5
C15A—C18—C16A 118.1 (16) C28—C29—H29C 109.5
C15—C18—C16A 61.6 (13) H29A—C29—H29C 109.5
C17A—C18—C16A 106 (2) H29B—C29—H29C 109.5
C16—C18—C11 113.2 (3) C28—C210—H21A 109.5
C15A—C18—C11 113.8 (10) C28—C210—H21B 109.5
C15—C18—C11 110.8 (3) H21A—C210—H21B 109.5
C17A—C18—C11 113.2 (14) C28—C210—H21C 109.5
C16A—C18—C11 101.1 (7) H21A—C210—H21C 109.5
C16—C18—C17 108.1 (4) H21B—C210—H21C 109.5
C15A—C18—C17 46.9 (12) C28—C211—H21D 109.5
C15—C18—C17 104.9 (4) C28—C211—H21E 109.5
C17A—C18—C17 65.7 (17) H21D—C211—H21E 109.5
C16A—C18—C17 152.2 (8) C28—C211—H21F 109.5
C11—C18—C17 106.6 (3) H21D—C211—H21F 109.5
C18—C15—H15A 109.5 H21E—C211—H21F 109.5
C18—C15—H15B 109.5 N31—C31—C32 122.0 (4)
C18—C15—H15C 109.5 N31—C31—H31 119.0
C18—C16—H16A 109.5 C32—C31—H31 119.0
C18—C16—H16B 109.5 C33—C32—C31 118.4 (4)
C18—C16—H16C 109.5 C33—C32—H32 120.8
C18—C17—H17A 109.5 C31—C32—H32 120.8
C18—C17—H17B 109.5 C34—C33—C32 120.9 (3)
C18—C17—H17C 109.5 C34—C33—H33 119.6
C18—C15A—H15D 109.5 C32—C33—H33 119.6
C18—C15A—H15E 109.5 C33—C34—C42 117.0 (4)
H15D—C15A—H15E 109.5 C33—C34—C35 124.0 (3)
C18—C15A—H15F 109.5 C42—C34—C35 118.9 (4)
H15D—C15A—H15F 109.5 C36—C35—C34 121.0 (3)
H15E—C15A—H15F 109.5 C36—C35—H35 119.5
C18—C16A—H16D 109.5 C34—C35—H35 119.5
C18—C16A—H16E 109.5 C35—C36—C37 122.4 (4)
H16D—C16A—H16E 109.5 C35—C36—H36 118.8
C18—C16A—H16F 109.5 C37—C36—H36 118.8
H16D—C16A—H16F 109.5 C38—C37—C41 117.0 (3)
H16E—C16A—H16F 109.5 C38—C37—C36 125.6 (4)
C18—C17A—H17D 109.5 C41—C37—C36 117.4 (4)
C18—C17A—H17E 109.5 C39—C38—C37 120.5 (3)
H17D—C17A—H17E 109.5 C39—C38—H38 119.7
C18—C17A—H17F 109.5 C37—C38—H38 119.7
H17D—C17A—H17F 109.5 C38—C39—C40 118.9 (4)
H17E—C17A—H17F 109.5 C38—C39—H39 120.6
O21—C21—C22 124.3 (2) C40—C39—H39 120.6
O21—C21—C28 114.1 (2) N32—C40—C39 123.5 (3)
C22—C21—C28 121.6 (2) N32—C40—H40 118.2
C21—C22—C23 125.7 (2) C39—C40—H40 118.2
C21—C22—H22 117.1 N32—C41—C37 122.1 (3)
C23—C22—H22 117.1 N32—C41—C42 117.1 (2)
O22—C23—C22 124.6 (2) C37—C41—C42 120.7 (3)
O22—C23—C24 114.3 (2) N31—C42—C34 123.3 (3)
C22—C23—C24 121.1 (2) N31—C42—C41 117.1 (2)
C26—C24—C27A 126.8 (14) C34—C42—C41 119.6 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2569).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Bučar, D.-K. & Meštrović, E. (2003). Acta Cryst. E59, m985–m987.
  3. Cotton, F. A. & Wise, J. J. (1965). Inorg. Chem.5, 1200–1207.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Kaitner, B. & Meštrović, E. (1993). Acta Cryst. C49, 1523–1525.
  7. Meštrović, E., Halasz, I., Bučar, D.-K. & Žgela, M. (2004). Acta Cryst. E60, m367–m369.
  8. Meštrović, E. & Kaitner, B. (2006). J. Chem. Crystallogr.36, 599–603.
  9. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  10. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  11. Soldatov, D. V., Enright, G. D., Ratcliff, C. I., Henegouwen, A. T. & Ripmeester, J. A. (2001). Chem. Mater.13, 4322–4334.
  12. Soldatov, D. V., Enright, G. D. & Ripmeester, J. A. (1999). Supramol. Chem.11, 35–47.
  13. Soldatov, D. V., Enright, G. D. & Ripmeester, J. A. (2002). Chem. Mater.14, 348–356.
  14. Soldatov, D. V. & Ripmeester, J. A. (2001a). Supramol. Chem.12, 357–368.
  15. Soldatov, D. V. & Ripmeester, J. A. (2001b). Chem. Eur. J.7, 2979–2994. [DOI] [PubMed]
  16. Soldatov, D. V., Tinnemans, P., Enright, G. D., Ratcliff, C. I., Diamente, P. R. & Ripmeester, J. A. (2003). Chem. Mater.15, 3826–3840.
  17. Steblyanko, A. Y., Grigor’ev, A. N., Tabachenko, V. V. & Mironov, A. V. (1992). Zh. Neorg. Khim.37, 1036–1038.
  18. Stoe & Cie (1994). STADI4 and X-RED Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680706672X/lh2569sup1.cif

e-64-0m230-sup1.cif (29.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706672X/lh2569Isup2.hkl

e-64-0m230-Isup2.hkl (357.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES