Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 21;64(Pt 1):m233–m234. doi: 10.1107/S1600536807067001

(Acetonitrile)[bis­(2-pyridylmeth­yl)amine]bis­(perchlorato)copper(II)

Ray J Butcher a,*, Yohannes T Tesema a, Teshome B Yisgedu a, Yilma Gultneh a
PMCID: PMC2915155  PMID: 21200577

Abstract

In the title compound, [Cu(ClO4)2(C12H13N3)(C2H3N)], the CuII atom is six-coordinate in a Jahn–Teller distorted octahedral geometry, with coordination by the tridentate chelating ligand, an acetonitrile mol­ecule, and two axial perchlorate anions. The tridentate ligand bis­(2-pyridylmeth­yl)amine chelates meridionally and equatorially while an acetonitrile mol­ecule is coordinated at the fourth equatorial site. The two perchlorate anions are disordered with site occupancy factors of 0.72/0.28. The amine H is involved in intra­molecular hydrogen bonding to the perchlorate O atoms and there are extensive but weak inter­molecular C—H⋯O inter­actions.

Related literature

For related literature, see: Belle et al. (2002); Gultneh et al. (1999); Humphreys et al. (2002); Palaniandavar et al. (1995).graphic file with name e-64-0m233-scheme1.jpg

Experimental

Crystal data

  • [Cu(ClO4)2(C12H13N3)(C2H3N)]

  • M r = 502.75

  • Monoclinic, Inline graphic

  • a = 8.3046 (16) Å

  • b = 31.453 (4) Å

  • c = 8.4978 (11) Å

  • β = 118.646 (10)°

  • V = 1948.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 293 (2) K

  • 0.45 × 0.21 × 0.07 mm

Data collection

  • Bruker P4S diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.757, T max = 0.964 (expected range = 0.709–0.904)

  • 4638 measured reflections

  • 4347 independent reflections

  • 2718 reflections with I > 2σ(I)

  • R int = 0.030

  • 3 standard reflections every 97 reflections intensity decay: <2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.193

  • S = 1.04

  • 4347 reflections

  • 320 parameters

  • 92 restraints

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067001/bq2058sup1.cif

e-64-0m233-sup1.cif (24.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067001/bq2058Isup2.hkl

e-64-0m233-Isup2.hkl (213KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O22A 0.91 2.45 2.89 (3) 110
N—H0A⋯O23 0.91 2.30 3.084 (12) 144
N—H0A⋯O23i 0.91 2.50 3.317 (10) 150
C2—H21⋯O13Aii 0.96 2.23 2.98 (2) 133
C2—H22⋯O14iii 0.96 2.36 3.103 (14) 134
C1A—H1AA⋯O12ii 0.93 2.46 3.176 (9) 134
C3A—H3AA⋯O23iv 0.93 2.53 3.376 (15) 152
C3A—H3AA⋯O23Aiv 0.93 2.29 2.993 (14) 133
C6A—H6AA⋯O21i 0.97 2.56 3.381 (9) 143
C2B—H2BA⋯O14Av 0.93 2.35 3.112 (16) 140
C3B—H3BA⋯O11vi 0.93 2.56 3.429 (10) 156
C4B—H4BA⋯O24Avii 0.93 2.25 3.06 (3) 145
C6B—H6BA⋯O12 0.97 2.56 3.425 (13) 149
C6B—H6BB⋯O24Avii 0.97 2.51 3.211 (16) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

RJB acknowledges the Laboratory for the Structure of Matter at the Naval Research Laboratory, Washington, DC, USA, for access to their diffractometer.

supplementary crystallographic information

Comment

Bis(2-pyridylmethyl)amine (L1) has been used as a chelating ligand for several metal ions, as a single unit, or as two or more units bridged by other groups (such as m-xylyl spaces or aliphatic hydrocarbon chains) through the amine N atom (Gultneh et al., 1999; Palaniandavar et al., 1995; Belle et al., 2002; Humphreys et al., 2002). We report here the structure of the copper (II) complex of the ligand L1. The complex was synthesized by the reaction of L1 with Cu(ClO4)2.6H2O in acetonitrile.

The crystal structure shows that CuII is six-coordinate in a Jahn-Teller distorted geometry with coordination by the tridentate chelating ligand, an acetonitrile molecule, and two axial perchlorate anions (Fig. 1.). The tridentate ligand L1 is chelating meridionally and equatorially while an acetonitrile molecule is coordinated at the fourth equatorial site. One axial perchlorate group is at a CuII—OClO3- distance of 2.455 (9) Å while the other is at 2.828 (5) Å consistent with its expected Jahn-Teller elongation (O—Cu—O angle 169.1 (2)°). The mutually trans Cu—Npy distances are 1.980 (5) Å and 1.984 (5) Å and span an angle of 165.3 (2)°. The Cu—Namine bond distance is 1.991 (5) Å. The Cu—Nacetonitrile bond distance of 1.980 (5) Å is comparable to the Cu—N distances of the N atoms. The amine H is involved in intramolecular hydrogen bonding to the perchlorate O atoms and there are extensive but weak intermolecular C—H···O interactions. (Table 1.).

Experimental

The title compound, bis(2-pyridylmethyl)amine copper(II) acetonitrile bis(perchlorate), was obtained by refluxing bis(2-pyridylmethyl)amine (2 mmol) and copper(II) perchlorate hexahydrate (2 mmol) in 200 ml of acetonitrile for 1 h. The product deposited on cooling the solution. Suitable crystals suited for crystallographic structure determination were obtained by slow diffusion of diethyl ether into the nitromethane solution of the complex.

Refinement

The two perchlorate anions are disordered such that O11 and O21 are unique and the remaining O atoms are disordered over two conformations with occupancy factors of 0.708 (9), 0.292 (9) and 0.73 (3), 0.27 (3), respectively. The H atoms were idealized with an N—H distance of 0.91 and C—H distances were idealized at 0.93 (aromatic C—H), 0.96 (CH3), and 0.97 (CH2) Å and Uiso(H) = 1.2Ueq(C) (1.5Ueq(C) for the CH3 protons).

Figures

Fig. 1.

Fig. 1.

The title compound with numbering scheme used. Ellipsoids are drawn at the 20% probability level.

Fig. 2.

Fig. 2.

The packing arrangement viewed down the c axis showing the intramolecular N—H···O and intermolecular C—H···O interactions in dashed lines.

Crystal data

[Cu(ClO4)2(C12H13N3)(C2H3N)] F000 = 1020
Mr = 502.75 Dx = 1.714 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P2ybc Cell parameters from 54 reflections
a = 8.3046 (16) Å θ = 2.6–13.1º
b = 31.453 (4) Å µ = 1.45 mm1
c = 8.4978 (11) Å T = 293 (2) K
β = 118.646 (10)º Plate, blue
V = 1948.0 (5) Å3 0.45 × 0.21 × 0.07 mm
Z = 4

Data collection

Bruker P4S diffractometer Rint = 0.030
Radiation source: fine-focus sealed tube θmax = 27.5º
Monochromator: graphite θmin = 2.6º
T = 293(2) K h = 0→9
2θ/ω scans k = −40→0
Absorption correction: empirical (using intensity measurements) via psi scans(North et al., 1968) l = −11→9
Tmin = 0.757, Tmax = 0.964 3 standard reflections
4638 measured reflections every 97 reflections
4347 independent reflections intensity decay: <2%
2718 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064 H-atom parameters constrained
wR(F2) = 0.193   w = 1/[σ2(Fo2) + (0.0863P)2 + 3.5739P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
4347 reflections Δρmax = 0.49 e Å3
320 parameters Δρmin = −0.46 e Å3
92 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu 0.85396 (9) 0.12165 (2) −0.01007 (9) 0.0455 (2)
Cl1 0.5466 (2) 0.19134 (7) −0.4772 (2) 0.0704 (5)
Cl2 1.07924 (18) 0.04196 (5) 0.29953 (18) 0.0480 (4)
O11 0.6293 (8) 0.1760 (2) −0.2975 (7) 0.104 (2)
O12 0.5827 (15) 0.1680 (3) −0.5954 (12) 0.107 (4) 0.708 (9)
O13 0.3563 (10) 0.1998 (4) −0.5489 (12) 0.106 (3) 0.708 (9)
O14 0.6252 (16) 0.2343 (3) −0.4642 (15) 0.128 (4) 0.708 (9)
O12A 0.412 (3) 0.1546 (6) −0.561 (3) 0.123 (7) 0.292 (9)
O13A 0.673 (3) 0.1865 (9) −0.538 (3) 0.121 (8) 0.292 (9)
O14A 0.449 (3) 0.2264 (6) −0.510 (3) 0.134 (8) 0.292 (9)
O21 1.2524 (7) 0.0234 (2) 0.4056 (8) 0.105 (2)
O22 1.0940 (12) 0.0848 (3) 0.2525 (18) 0.073 (3) 0.73 (3)
O23 0.9968 (17) 0.0176 (3) 0.1363 (12) 0.091 (4) 0.73 (3)
O24 0.9656 (18) 0.0399 (5) 0.378 (2) 0.114 (5) 0.73 (3)
O22A 1.083 (3) 0.0726 (9) 0.180 (4) 0.061 (5) 0.27 (3)
O23A 0.945 (3) 0.0114 (7) 0.200 (4) 0.103 (11) 0.27 (3)
O24A 1.031 (4) 0.0626 (11) 0.422 (3) 0.120 (13) 0.27 (3)
N 0.8033 (7) 0.07655 (17) −0.1923 (6) 0.0535 (12)
H0A 0.8722 0.0536 −0.1326 0.064*
N1 0.8876 (7) 0.16941 (18) 0.1547 (7) 0.0578 (13)
N1A 0.6448 (6) 0.09486 (15) 0.0037 (6) 0.0437 (10)
N1B 1.0370 (7) 0.14026 (16) −0.0821 (7) 0.0505 (12)
C1 0.9117 (9) 0.1962 (2) 0.2536 (9) 0.0592 (16)
C2 0.9472 (12) 0.2296 (3) 0.3847 (12) 0.085 (2)
H21 0.9179 0.2194 0.4746 0.127*
H22 0.8726 0.2539 0.3259 0.127*
H23 1.0744 0.2375 0.4402 0.127*
C1A 0.5988 (8) 0.1008 (2) 0.1336 (7) 0.0501 (14)
H1AA 0.6635 0.1206 0.2237 0.060*
C2A 0.4574 (8) 0.0783 (2) 0.1363 (8) 0.0568 (16)
H2AA 0.4302 0.0820 0.2296 0.068*
C3A 0.3585 (8) 0.0508 (2) 0.0004 (9) 0.0579 (16)
H3AA 0.2603 0.0361 −0.0017 0.069*
C4A 0.4043 (8) 0.04453 (19) −0.1353 (9) 0.0544 (15)
H4AA 0.3383 0.0256 −0.2285 0.065*
C5A 0.5498 (7) 0.06705 (18) −0.1285 (7) 0.0440 (12)
C6A 0.6090 (8) 0.0636 (2) −0.2696 (8) 0.0608 (17)
H6AA 0.5946 0.0345 −0.3126 0.073*
H6AB 0.5331 0.0818 −0.3704 0.073*
C1B 1.1723 (8) 0.1693 (2) 0.0060 (9) 0.0613 (17)
H1BA 1.1857 0.1809 0.1123 0.074*
C2B 1.2893 (10) 0.1821 (3) −0.0557 (13) 0.081 (2)
H2BA 1.3817 0.2018 0.0070 0.097*
C3B 1.2643 (11) 0.1644 (3) −0.2174 (13) 0.090 (3)
H3BA 1.3384 0.1731 −0.2658 0.108*
C4B 1.1319 (11) 0.1345 (3) −0.3037 (11) 0.075 (2)
H4BA 1.1176 0.1220 −0.4087 0.090*
C5B 1.0171 (9) 0.1229 (2) −0.2317 (9) 0.0580 (16)
C6B 0.8664 (10) 0.0902 (2) −0.3200 (8) 0.0624 (17)
H6BA 0.7647 0.1024 −0.4259 0.075*
H6BB 0.9120 0.0659 −0.3569 0.075*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu 0.0421 (4) 0.0597 (5) 0.0456 (4) −0.0037 (3) 0.0299 (3) −0.0057 (3)
Cl1 0.0599 (10) 0.0979 (14) 0.0629 (10) 0.0036 (9) 0.0371 (9) −0.0078 (9)
Cl2 0.0430 (7) 0.0613 (9) 0.0422 (7) −0.0001 (6) 0.0225 (6) −0.0009 (6)
O11 0.086 (4) 0.151 (6) 0.072 (4) 0.032 (4) 0.036 (3) 0.023 (4)
O12 0.120 (8) 0.114 (8) 0.098 (6) 0.021 (6) 0.061 (6) −0.035 (5)
O13 0.070 (5) 0.147 (9) 0.101 (6) 0.021 (5) 0.041 (5) 0.001 (6)
O14 0.146 (9) 0.093 (7) 0.154 (9) −0.027 (6) 0.079 (8) −0.022 (6)
O12A 0.110 (12) 0.124 (13) 0.105 (11) −0.020 (11) 0.026 (10) −0.011 (11)
O13A 0.122 (16) 0.131 (18) 0.163 (16) 0.012 (13) 0.110 (13) 0.011 (14)
O14A 0.122 (13) 0.092 (12) 0.166 (13) 0.027 (12) 0.050 (13) 0.006 (12)
O21 0.066 (3) 0.113 (5) 0.103 (5) 0.021 (3) 0.014 (3) 0.016 (4)
O22 0.070 (4) 0.064 (5) 0.072 (6) −0.010 (4) 0.023 (4) −0.004 (4)
O23 0.099 (7) 0.075 (6) 0.057 (5) −0.009 (5) 0.003 (5) −0.010 (4)
O24 0.127 (9) 0.137 (11) 0.137 (10) 0.022 (8) 0.111 (9) 0.025 (8)
O22A 0.065 (7) 0.066 (9) 0.065 (9) 0.014 (7) 0.041 (8) 0.020 (7)
O23A 0.101 (19) 0.106 (19) 0.08 (2) −0.064 (15) 0.026 (15) −0.010 (14)
O24A 0.22 (4) 0.11 (2) 0.076 (16) −0.01 (2) 0.11 (2) −0.034 (16)
N 0.057 (3) 0.071 (3) 0.045 (3) 0.001 (2) 0.035 (2) −0.003 (2)
N1 0.056 (3) 0.065 (3) 0.065 (3) −0.009 (3) 0.039 (3) −0.014 (3)
N1A 0.040 (2) 0.049 (3) 0.050 (3) 0.000 (2) 0.028 (2) 0.000 (2)
N1B 0.049 (3) 0.061 (3) 0.054 (3) 0.013 (2) 0.035 (2) 0.014 (2)
C1 0.049 (3) 0.074 (5) 0.060 (4) −0.004 (3) 0.030 (3) −0.005 (3)
C2 0.094 (6) 0.067 (5) 0.100 (6) −0.017 (4) 0.053 (5) −0.029 (4)
C1A 0.042 (3) 0.074 (4) 0.042 (3) −0.002 (3) 0.026 (3) −0.006 (3)
C2A 0.043 (3) 0.084 (5) 0.054 (4) 0.001 (3) 0.032 (3) 0.007 (3)
C3A 0.039 (3) 0.072 (4) 0.066 (4) 0.001 (3) 0.028 (3) 0.015 (3)
C4A 0.038 (3) 0.049 (3) 0.066 (4) −0.002 (3) 0.017 (3) −0.002 (3)
C5A 0.036 (3) 0.048 (3) 0.048 (3) 0.008 (2) 0.020 (2) −0.002 (2)
C6A 0.049 (3) 0.084 (5) 0.048 (3) −0.004 (3) 0.023 (3) −0.016 (3)
C1B 0.047 (3) 0.063 (4) 0.074 (4) −0.006 (3) 0.030 (3) 0.008 (3)
C2B 0.055 (4) 0.085 (5) 0.118 (7) 0.010 (4) 0.054 (5) 0.030 (5)
C3B 0.076 (5) 0.103 (7) 0.125 (8) 0.024 (5) 0.075 (6) 0.053 (6)
C4B 0.080 (5) 0.093 (6) 0.083 (5) 0.033 (4) 0.064 (4) 0.034 (4)
C5B 0.055 (4) 0.075 (4) 0.061 (4) 0.019 (3) 0.040 (3) 0.023 (3)
C6B 0.074 (4) 0.080 (5) 0.051 (3) 0.014 (4) 0.045 (3) 0.003 (3)

Geometric parameters (Å, °)

Cu—N1 1.980 (5) N1B—C1B 1.360 (8)
Cu—N1B 1.980 (5) C1—C2 1.455 (10)
Cu—N1A 1.984 (4) C2—H21 0.9600
Cu—N 1.991 (5) C2—H22 0.9600
Cu—O22A 2.379 (17) C2—H23 0.9600
Cu—O22 2.455 (9) C1A—C2A 1.380 (8)
Cu—O11 2.828 (5) C1A—H1AA 0.9300
Cl1—O14A 1.317 (13) C2A—C3A 1.360 (9)
Cl1—O12 1.387 (7) C2A—H2AA 0.9300
Cl1—O13A 1.389 (13) C3A—C4A 1.390 (9)
Cl1—O13 1.420 (7) C3A—H3AA 0.9300
Cl1—O11 1.425 (5) C4A—C5A 1.377 (8)
Cl1—O14 1.483 (8) C4A—H4AA 0.9300
Cl1—O12A 1.524 (14) C5A—C6A 1.503 (8)
Cl2—O24 1.394 (7) C6A—H6AA 0.9700
Cl2—O21 1.406 (5) C6A—H6AB 0.9700
Cl2—O23A 1.407 (13) C1B—C2B 1.367 (9)
Cl2—O22A 1.412 (12) C1B—H1BA 0.9300
Cl2—O22 1.428 (7) C2B—C3B 1.403 (12)
Cl2—O24A 1.435 (12) C2B—H2BA 0.9300
Cl2—O23 1.438 (7) C3B—C4B 1.364 (12)
N—C6A 1.477 (8) C3B—H3BA 0.9300
N—C6B 1.478 (7) C4B—C5B 1.405 (8)
N—H0A 0.9100 C4B—H4BA 0.9300
N1—C1 1.137 (8) C5B—C6B 1.512 (10)
N1A—C5A 1.341 (7) C6B—H6BA 0.9700
N1A—C1A 1.344 (6) C6B—H6BB 0.9700
N1B—C5B 1.320 (8)
N1—Cu—N1B 97.2 (2) C1A—N1A—Cu 126.2 (4)
N1—Cu—N1A 96.40 (19) C5B—N1B—C1B 119.8 (5)
N1B—Cu—N1A 165.3 (2) C5B—N1B—Cu 114.5 (4)
N1—Cu—N 175.1 (2) C1B—N1B—Cu 125.6 (4)
N1B—Cu—N 83.0 (2) N1—C1—C2 178.1 (8)
N1A—Cu—N 83.01 (19) C1—C2—H21 109.5
N1—Cu—O22A 102.5 (9) C1—C2—H22 109.5
N1B—Cu—O22A 85.3 (4) H21—C2—H22 109.5
N1A—Cu—O22A 97.0 (5) C1—C2—H23 109.5
N—Cu—O22A 82.4 (9) H21—C2—H23 109.5
N1—Cu—O22 86.4 (4) H22—C2—H23 109.5
N1B—Cu—O22 90.6 (3) N1A—C1A—C2A 121.4 (6)
N1A—Cu—O22 95.6 (3) N1A—C1A—H1AA 119.3
N—Cu—O22 98.5 (4) C2A—C1A—H1AA 119.3
O22A—Cu—O22 16.4 (6) C3A—C2A—C1A 119.0 (6)
N1—Cu—O11 87.9 (2) C3A—C2A—H2AA 120.5
N1B—Cu—O11 80.84 (18) C1A—C2A—H2AA 120.5
N1A—Cu—O11 94.23 (19) C2A—C3A—C4A 120.0 (6)
N—Cu—O11 87.3 (2) C2A—C3A—H3AA 120.0
O12—Cl1—O13 111.7 (6) C4A—C3A—H3AA 120.0
O14A—Cl1—O11 116.3 (11) C5A—C4A—C3A 118.4 (6)
O12—Cl1—O11 115.9 (5) C5A—C4A—H4AA 120.8
O13A—Cl1—O11 107.6 (10) C3A—C4A—H4AA 120.8
O13—Cl1—O11 112.9 (5) N1A—C5A—C4A 121.5 (5)
O12—Cl1—O14 107.2 (6) N1A—C5A—C6A 115.4 (5)
O13—Cl1—O14 102.8 (6) C4A—C5A—C6A 123.1 (5)
O11—Cl1—O14 105.1 (5) N—C6A—C5A 109.3 (5)
O14A—Cl1—O12A 107.3 (12) N—C6A—H6AA 109.8
O13A—Cl1—O12A 104.8 (12) C5A—C6A—H6AA 109.8
O24—Cl2—O21 113.2 (6) N—C6A—H6AB 109.8
O21—Cl2—O23A 112.0 (11) C5A—C6A—H6AB 109.8
O21—Cl2—O22A 112.0 (9) H6AA—C6A—H6AB 108.3
O23A—Cl2—O22A 108.6 (10) N1B—C1B—C2B 122.6 (7)
O24—Cl2—O22 110.2 (6) N1B—C1B—H1BA 118.7
O21—Cl2—O22 111.8 (4) C2B—C1B—H1BA 118.7
O21—Cl2—O24A 106.0 (10) C1B—C2B—C3B 117.4 (8)
O23A—Cl2—O24A 109.1 (12) C1B—C2B—H2BA 121.3
O22A—Cl2—O24A 108.9 (11) C3B—C2B—H2BA 121.3
O24—Cl2—O23 108.6 (6) C4B—C3B—C2B 120.2 (7)
O21—Cl2—O23 105.4 (5) C4B—C3B—H3BA 119.9
O22—Cl2—O23 107.3 (5) C2B—C3B—H3BA 119.9
Cl1—O11—Cu 155.4 (4) C3B—C4B—C5B 119.1 (8)
Cl2—O22—Cu 124.0 (5) C3B—C4B—H4BA 120.5
Cl2—O22A—Cu 130.1 (12) C5B—C4B—H4BA 120.5
C6A—N—C6B 116.7 (5) N1B—C5B—C4B 120.9 (7)
C6A—N—Cu 108.7 (4) N1B—C5B—C6B 116.8 (5)
C6B—N—Cu 110.3 (4) C4B—C5B—C6B 122.2 (7)
C6A—N—H0A 106.9 N—C6B—C5B 109.5 (5)
C6B—N—H0A 106.9 N—C6B—H6BA 109.8
Cu—N—H0A 106.9 C5B—C6B—H6BA 109.8
C1—N1—Cu 177.8 (6) N—C6B—H6BB 109.8
C5A—N1A—C1A 119.6 (5) C5B—C6B—H6BB 109.8
C5A—N1A—Cu 114.1 (3) H6BA—C6B—H6BB 108.2
O14A—Cl1—O11—Cu −174.7 (16) O22—Cu—N1A—C5A −109.8 (5)
O12—Cl1—O11—Cu 3.7 (12) O11—Cu—N1A—C5A 74.8 (4)
O13A—Cl1—O11—Cu −35.7 (16) N1—Cu—N1A—C1A −19.9 (5)
O13—Cl1—O11—Cu 134.3 (10) N1B—Cu—N1A—C1A −177.9 (7)
O14—Cl1—O11—Cu −114.4 (10) N—Cu—N1A—C1A 165.0 (5)
O12A—Cl1—O11—Cu 72.2 (14) O22A—Cu—N1A—C1A 83.6 (10)
N1—Cu—O11—Cl1 152.0 (10) O22—Cu—N1A—C1A 67.1 (6)
N1B—Cu—O11—Cl1 54.3 (10) O11—Cu—N1A—C1A −108.2 (5)
N1A—Cu—O11—Cl1 −111.8 (10) N1—Cu—N1B—C5B −161.1 (4)
N—Cu—O11—Cl1 −29.0 (10) N1A—Cu—N1B—C5B −3.1 (10)
O22A—Cu—O11—Cl1 22 (3) N—Cu—N1B—C5B 14.0 (4)
O22—Cu—O11—Cl1 93 (2) O22A—Cu—N1B—C5B 96.9 (10)
O24—Cl2—O22—Cu −76.8 (8) O22—Cu—N1B—C5B 112.5 (5)
O21—Cl2—O22—Cu 156.4 (6) O11—Cu—N1B—C5B −74.4 (4)
O23A—Cl2—O22—Cu 9.1 (16) N1—Cu—N1B—C1B 17.1 (5)
O22A—Cl2—O22—Cu 60 (2) N1A—Cu—N1B—C1B 175.0 (7)
O24A—Cl2—O22—Cu −99.3 (11) N—Cu—N1B—C1B −167.9 (5)
O23—Cl2—O22—Cu 41.3 (8) O22A—Cu—N1B—C1B −85.0 (10)
N1—Cu—O22—Cl2 132.1 (10) O22—Cu—N1B—C1B −69.4 (6)
N1B—Cu—O22—Cl2 −130.7 (10) O11—Cu—N1B—C1B 103.7 (5)
N1A—Cu—O22—Cl2 36.0 (10) C5A—N1A—C1A—C2A 1.2 (9)
N—Cu—O22—Cl2 −47.7 (10) Cu—N1A—C1A—C2A −175.6 (4)
O22A—Cu—O22—Cl2 −59.7 (17) N1A—C1A—C2A—C3A −2.6 (10)
O11—Cu—O22—Cl2 −169.2 (11) C1A—C2A—C3A—C4A 2.1 (10)
O24—Cl2—O22A—Cu −21 (3) C2A—C3A—C4A—C5A −0.5 (9)
O21—Cl2—O22A—Cu −171.5 (18) C1A—N1A—C5A—C4A 0.5 (8)
O23A—Cl2—O22A—Cu 64 (2) Cu—N1A—C5A—C4A 177.7 (4)
O22—Cl2—O22A—Cu −76 (3) C1A—N1A—C5A—C6A 178.4 (5)
O24A—Cl2—O22A—Cu −55 (2) Cu—N1A—C5A—C6A −4.4 (6)
O23—Cl2—O22A—Cu 86 (2) C3A—C4A—C5A—N1A −0.9 (9)
N1—Cu—O22A—Cl2 83 (3) C3A—C4A—C5A—C6A −178.6 (6)
N1B—Cu—O22A—Cl2 180 (3) C6B—N—C6A—C5A −158.4 (5)
N1A—Cu—O22A—Cl2 −15 (3) Cu—N—C6A—C5A −32.9 (6)
N—Cu—O22A—Cl2 −97 (3) N1A—C5A—C6A—N 25.0 (8)
O22—Cu—O22A—Cl2 71 (2) C4A—C5A—C6A—N −157.1 (6)
O11—Cu—O22A—Cl2 −148.2 (9) C5B—N1B—C1B—C2B 1.1 (10)
N1B—Cu—N—C6A −150.7 (4) Cu—N1B—C1B—C2B −177.0 (5)
N1A—Cu—N—C6A 25.0 (4) N1B—C1B—C2B—C3B 0.6 (11)
O22A—Cu—N—C6A 123.1 (6) C1B—C2B—C3B—C4B −2.2 (11)
O22—Cu—N—C6A 119.7 (5) C2B—C3B—C4B—C5B 2.2 (11)
O11—Cu—N—C6A −69.6 (4) C1B—N1B—C5B—C4B −1.1 (9)
N1B—Cu—N—C6B −21.5 (4) Cu—N1B—C5B—C4B 177.1 (5)
N1A—Cu—N—C6B 154.2 (4) C1B—N1B—C5B—C6B 178.8 (6)
O22A—Cu—N—C6B −107.7 (6) Cu—N1B—C5B—C6B −3.0 (7)
O22—Cu—N—C6B −111.1 (5) C3B—C4B—C5B—N1B −0.5 (10)
O11—Cu—N—C6B 59.6 (4) C3B—C4B—C5B—C6B 179.6 (7)
N1—Cu—N1A—C5A 163.1 (4) C6A—N—C6B—C5B 149.5 (6)
N1B—Cu—N1A—C5A 5.1 (10) Cu—N—C6B—C5B 24.8 (6)
N—Cu—N1A—C5A −12.0 (4) N1B—C5B—C6B—N −14.8 (8)
O22A—Cu—N1A—C5A −93.4 (9) C4B—C5B—C6B—N 165.2 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N—H0A···O22A 0.91 2.45 2.89 (3) 110
N—H0A···O23 0.91 2.30 3.084 (12) 144
N—H0A···O23i 0.91 2.50 3.317 (10) 150
C2—H21···O13Aii 0.96 2.23 2.98 (2) 133
C2—H22···O14iii 0.96 2.36 3.103 (14) 134
C1A—H1AA···O12ii 0.93 2.46 3.176 (9) 134
C3A—H3AA···O23iv 0.93 2.53 3.376 (15) 152
C3A—H3AA···O23Aiv 0.93 2.29 2.993 (14) 133
C6A—H6AA···O21i 0.97 2.56 3.381 (9) 143
C2B—H2BA···O14Av 0.93 2.35 3.112 (16) 140
C3B—H3BA···O11vi 0.93 2.56 3.429 (10) 156
C4B—H4BA···O24Avii 0.93 2.25 3.06 (3) 145
C6B—H6BA···O12 0.97 2.56 3.425 (13) 149
C6B—H6BB···O24Avii 0.97 2.51 3.211 (16) 129

Symmetry codes: (i) −x+2, −y, −z; (ii) x, y, z+1; (iii) x, −y+1/2, z+1/2; (iv) −x+1, −y, −z; (v) x+1, −y+1/2, z+1/2; (vi) x+1, y, z; (vii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2058).

References

  1. Belle, C., Beguin, C., Gautier-Luneau, I., Hamman, S., Philouze, C., Pierre, J. L., Thomas, F. & Storelli, S. (2002). Inorg. Chem.41, 479–491. [DOI] [PubMed]
  2. Bruker (1997). XSCANS Version 2.20. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2000). SHELXTL Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Gultneh, Y., Khan, A. R., Blaize, D., Chaudhry, S., Ahvazi, B., Marvey, B. B. & Butcher, R. J. (1999). J. Inorg. Biochem.75, 7–18.
  5. Humphreys, K. J., Karlin, K. D. & Rokita, S. E. (2002). J. Am. Chem. Soc.124, 8055–8066. [DOI] [PubMed]
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Palaniandavar, M., Pandiyan, T., Lakshiminarayanan, M. & Manohar, H. J. (1995). J. Chem. Soc. Dalton Trans. pp. 455–461.
  8. Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
  9. Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067001/bq2058sup1.cif

e-64-0m233-sup1.cif (24.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067001/bq2058Isup2.hkl

e-64-0m233-Isup2.hkl (213KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES