Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 21;64(Pt 1):m235–m236. doi: 10.1107/S1600536807066913

Tris(propane-1,2-diamine-κ2 N,N′)nickel(II) tetra­cyanidoplatinate(II)

Ivan Potočňák a,*, Martin Vavra a, Dirk Steinborn b, Christoph Wagner b
PMCID: PMC2915156  PMID: 21200578

Abstract

In the title compound, [Ni(C3H10N2)3][Pt(CN)4], the [Pt(CN)4]2− anion with the environment of the PtII atom, lying on a mirror plane, is square planar, whereas the NiII atom in the [Ni(C3N2H10)3]2+ cation, also lying on a mirror plane, has a slightly distorted octa­hedral coordination geometry. Three chiral 1,2-diamino­propane mol­ecules, which are disordered equally over two sets of positions, adopt Δ(δδδ) and Δ(λλλ) configurations. The average Ni—N and Pt—C bond lengths are 2.131 (10) and 1.988 (10) Å, respectively. The cations and anions are connected by N—H⋯N hydrogen bonds.

Related literature

For related literature on compounds with [Ni(1,2-diamino­propane)3]2+ cations, see: Behrens et al. (2003) for Sn2S6 4−; Kuchár & Černák (2008) for [Ni(CN)4]2−; Lin et al. (2005) for [H3Ge14NiO27]4−; Nasanen et al. (1964) for ClO4 ; Saha et al. (2005) for [Fe(CN)5NO]2−.graphic file with name e-64-0m235-scheme1.jpg

Experimental

Crystal data

  • [Ni(C3H10N2)3][Pt(CN)4]

  • M r = 580.27

  • Orthorhombic, Inline graphic

  • a = 9.8206 (18) Å

  • b = 13.694 (2) Å

  • c = 16.261 (3) Å

  • V = 2186.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.27 mm−1

  • T = 220 K

  • 0.38 × 0.11 × 0.06 mm

Data collection

  • Stoe IPDS diffractometer

  • Absorption correction: numerical (IPDS FACE; Stoe & Cie, 1999) T min = 0.104, T max = 0.446

  • 15408 measured reflections

  • 2197 independent reflections

  • 1807 reflections with I > 2σ(I)

  • R int = 0.088

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.085

  • S = 1.04

  • 2197 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = 1.23 e Å−3

  • Δρmin = −1.92 e Å−3

Data collection: IPDS EXPOSE (Stoe & Cie, 1999); cell refinement: IPDS CELL (Stoe & Cie, 1999); data reduction: IPDS INTEGRATE (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066913/hy2111sup1.cif

e-64-0m235-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066913/hy2111Isup2.hkl

e-64-0m235-Isup2.hkl (105.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Pt—C1 1.958 (10)
Pt—C2 1.995 (11)
Pt—C3 1.999 (9)
Ni—N21i 2.118 (9)
Ni—N10 2.127 (9)
Ni—N30 2.122 (10)
Ni—N40 2.137 (9)
Ni—N11i 2.142 (10)
Ni—N20 2.142 (10)
C1—Pt—C2 179.4 (3)
C1—Pt—C3 89.5 (2)
C2—Pt—C3 90.5 (2)
C3i—Pt—C3 178.8 (4)
N21i—Ni—N10 171.3 (4)
N21i—Ni—N30 93.3 (4)
N10—Ni—N30 93.3 (4)
N21i—Ni—N40 91.7 (4)
N10—Ni—N40 95.0 (4)
N30—Ni—N40 80.8 (4)
N21i—Ni—N11i 80.5 (4)
N10—Ni—N11i 93.3 (4)
N30—Ni—N11i 94.4 (4)
N40—Ni—N11i 170.6 (4)
N21i—Ni—N20 93.8 (4)
N10—Ni—N20 80.4 (4)
N30—Ni—N20 170.1 (4)
N40—Ni—N20 92.2 (4)
N11i—Ni—N20 93.5 (4)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21F⋯N2 0.90 2.51 3.311 (12) 148
N40—H40A⋯N2 0.90 2.30 3.160 (14) 160
N10—H10B⋯N3ii 0.90 2.40 3.193 (13) 148
N21—H21E⋯N3ii 0.90 2.24 3.066 (13) 152
N40—H40B⋯N3ii 0.90 2.21 3.098 (12) 169
N11—H11C⋯N1iii 0.90 2.48 3.342 (13) 159
N20—H20B⋯N1iii 0.90 2.11 3.005 (12) 174
N11—H11D⋯N1iv 0.90 2.46 3.242 (13) 145
N30—H30B⋯N3v 0.90 2.31 3.191 (11) 166

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported by the Slovak Grant Agency VEGA (grant No. 1/2470/05), and by APVT (grant No. 20-005204). MV thanks DAAD for financial support and the hospitality of Martin Luther University.

supplementary crystallographic information

Comment

The title compound, [Ni(pn)3][Pt(CN)4] (pn = 1,2-diaminopropane) has been prepared by a chance within our studies on the role of hydrogen bonds as possible exchange paths for magnetic interactions in low-dimensional compounds. The compound consists of discrete [Ni(pn)3]2+ cations and [Pt(CN)4]2- anions (Fig. 1). Selected bond lengths and angles are given in Table 1. The NiII atom is coordinated by six N atoms of three racemic pn ligands, which are disordered over two sets of positions, with site occupancies of 0.50 (except methylene and methine C atoms), thus forming Δ(δδδ) and Δ(λλλ) configurations. Moreover, a mirror plane passes through the tetracyanoplatinate anion (N1, C1, Pt, C2 and N2 atoms) and the [Ni(pn)3]2+ cation (Ni, C31 and C41 atoms). The coordination geometry around the NiII atom can be described as octahedral. The two N atoms occupying axial positions form an angle of 170.6 (4)° and the Ni—N bond distances range from 2.118 (9)–2.142 (10)Å [mean bond length is 2.131 (10) Å], in good agreement with the values reported of other [Ni(pn)3]2+ complexes (Behrens et al., 2003; Kuchár & Černák, 2008; Saha et al., 2005). Octahedral coordination geometry around the Ni atom was observed also in other compounds with [Ni(pn)3]2+ cation (Nasanen et al., 1964; Lin et al., 2005). The square-planar geometry of [Pt(CN)4]2- is in good agreement with those of the previous studies with average Pt—C bond lengths of 1.988 (10) Å. The structure is stabilized also by the N—H···N hydrogen bonds between the cations and anions (Table 2).

Experimental

The title compound were prepared by a chance during our attempts to prepare chain-like [Ni(pn)2][Pt(CN)4] compound suitable for magnetic studies. A mixture of a 10 ml aqueous solution of NiSO4.6H2O (0.132 g, 0.5 mmol) and pn (0.086 ml, 1.0 mmol) was stirred for 30 min and a 10 ml aqueous solution of K2[Pt(CN)4].3H2O (0.216 g, 0.5 mmol) was added. The pink precipitate thus formed was dissolved by addition of a concentrated solution of ammonia (20 ml). After few days, pink crystals of the title compound were filtered off and dried in air.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with N—H = 0.90 Å, C—H = 0.97Å (CH2), 0.98Å (CH) and Uiso(H) = 1.2Ueq(C,N) and with C—H = 0.96Å (CH3) and Uiso(H) = 1.5Ueq(C). The highest residual electron density and the deepest hole were found 1.01 and 0.88 Å from the Pt atom, respectively.

Figures

Fig. 1.

Fig. 1.

The structures of the cation and anion in the title compound. Displacement ellipsoids are drawn at the 40% probability level. Coloured atoms and black bonds show the Δ(δδδ) configuration whereas transparent atoms and bonds represent the Δ(λλλ) configuration of the [Ni(pn)3]2+ cation. Hydrogen atoms are ommited for clarity. [Symmetry code: (i) x, 1/2 - y, z.]

Crystal data

[Ni(C3H10N2)3][Pt(CN)4] F000 = 1136
Mr = 580.27 Dx = 1.762 Mg m3
Orthorhombic, Pnma Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2n Cell parameters from 8000 reflections
a = 9.8206 (18) Å θ = 2.4–25.9º
b = 13.694 (2) Å µ = 7.27 mm1
c = 16.261 (3) Å T = 220 K
V = 2186.8 (7) Å3 Needle, pink
Z = 4 0.38 × 0.11 × 0.06 mm

Data collection

Stoe IPDS diffractometer 2197 independent reflections
Radiation source: fine-focus sealed tube 1807 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.088
T = 220 K θmax = 25.9º
φ scans θmin = 2.4º
Absorption correction: numerical(IPDS FACE; Stoe & Cie, 1999) h = −12→12
Tmin = 0.104, Tmax = 0.446 k = −16→16
15408 measured reflections l = −19→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.085   w = 1/[σ2(Fo2) + (0.0507P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2197 reflections Δρmax = 1.23 e Å3
160 parameters Δρmin = −1.92 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Pt 0.20444 (3) 0.2500 0.07418 (2) 0.04021 (13)
Ni 0.73154 (10) 0.2500 0.02973 (6) 0.0368 (2)
C1 0.1023 (9) 0.2500 0.1776 (5) 0.0475 (19)
N1 0.0397 (9) 0.2500 0.2376 (5) 0.072 (2)
C2 0.3067 (9) 0.2500 −0.0318 (7) 0.058 (2)
N2 0.3700 (10) 0.2500 −0.0916 (6) 0.079 (3)
C3 0.2044 (8) 0.1040 (6) 0.0754 (5) 0.069 (2)
N3 0.2032 (10) 0.0220 (4) 0.0777 (5) 0.106 (3)
C21 0.6124 (10) 0.4305 (6) 0.0987 (7) 0.104 (3)
H21A 0.5531 0.4642 0.1370 0.124* 0.50
H21B 0.6074 0.4631 0.0458 0.124* 0.50
H21C 0.5802 0.4971 0.0931 0.124* 0.50
H21D 0.5536 0.3967 0.1372 0.124* 0.50
N10 0.8434 (11) 0.3735 (7) 0.0711 (6) 0.048 (2) 0.50
H10A 0.9198 0.3542 0.0970 0.058* 0.50
H10B 0.8672 0.4112 0.0281 0.058* 0.50
N20 0.5722 (11) 0.3283 (7) 0.0909 (6) 0.051 (2) 0.50
H20A 0.4945 0.3238 0.0617 0.062* 0.50
H20B 0.5575 0.3024 0.1410 0.062* 0.50
C11 0.7537 (11) 0.4303 (6) 0.1294 (6) 0.085 (3)
H11A 0.7449 0.3821 0.1737 0.101* 0.50
H11B 0.8156 0.4621 0.0905 0.101* 0.50
N11 0.7811 (10) 0.3348 (8) 0.1363 (6) 0.051 (3) 0.50
H11C 0.7346 0.3108 0.1795 0.061* 0.50
H11D 0.8704 0.3275 0.1471 0.061* 0.50
N21 0.6087 (10) 0.3743 (6) 0.0070 (6) 0.048 (2) 0.50
H21E 0.6445 0.4121 −0.0328 0.057* 0.50
H21F 0.5234 0.3572 −0.0071 0.057* 0.50
C31 0.9053 (10) 0.2500 −0.1186 (6) 0.067 (3)
H31 0.9357 0.3170 −0.1082 0.081* 0.50
C41 0.7596 (13) 0.2500 −0.1515 (6) 0.087 (4)
H41A 0.7236 0.1841 −0.1547 0.104* 0.50
H41B 0.7551 0.2798 −0.2056 0.104* 0.50
N30 0.8963 (10) 0.1956 (7) −0.0412 (6) 0.047 (2) 0.50
H30A 0.9746 0.2020 −0.0128 0.056* 0.50
H30B 0.8835 0.1317 −0.0517 0.056* 0.50
N40 0.6798 (11) 0.3121 (7) −0.0867 (6) 0.047 (2) 0.50
H40A 0.5895 0.3084 −0.0956 0.057* 0.50
H40B 0.7054 0.3752 −0.0890 0.057* 0.50
C32 0.9945 (15) 0.2029 (13) −0.1810 (9) 0.089 (5) 0.50
H32A 1.0867 0.2023 −0.1615 0.134* 0.50
H32B 0.9898 0.2389 −0.2316 0.134* 0.50
H32C 0.9644 0.1371 −0.1903 0.134* 0.50
C12 0.808 (3) 0.5133 (17) 0.1769 (16) 0.101 (7) 0.50
H12A 0.9003 0.5003 0.1922 0.151* 0.50
H12B 0.7537 0.5224 0.2255 0.151* 0.50
H12C 0.8041 0.5714 0.1438 0.151* 0.50
C13 0.721 (3) 0.4965 (18) 0.2020 (17) 0.101 (7) 0.50
H13A 0.8029 0.5079 0.2332 0.151* 0.50
H13B 0.6546 0.4658 0.2364 0.151* 0.50
H13C 0.6867 0.5576 0.1821 0.151* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt 0.0384 (2) 0.02827 (17) 0.0540 (2) 0.000 −0.00989 (13) 0.000
Ni 0.0390 (5) 0.0239 (5) 0.0476 (5) 0.000 −0.0062 (4) 0.000
C1 0.048 (5) 0.040 (4) 0.055 (5) 0.000 −0.006 (4) 0.000
N1 0.073 (6) 0.080 (7) 0.064 (5) 0.000 −0.008 (5) 0.000
C2 0.041 (5) 0.064 (6) 0.068 (6) 0.000 −0.013 (5) 0.000
N2 0.048 (5) 0.117 (9) 0.072 (6) 0.000 0.005 (4) 0.000
C3 0.076 (6) 0.057 (5) 0.074 (4) 0.005 (4) 0.001 (4) −0.007 (4)
N3 0.177 (11) 0.016 (3) 0.124 (6) 0.004 (4) 0.013 (5) −0.014 (3)
C21 0.080 (6) 0.044 (4) 0.187 (10) 0.005 (4) 0.037 (7) −0.042 (5)
N10 0.044 (6) 0.033 (5) 0.066 (6) −0.005 (4) −0.014 (5) −0.007 (5)
N20 0.050 (6) 0.046 (5) 0.057 (6) 0.007 (5) −0.007 (5) −0.005 (4)
C11 0.104 (6) 0.053 (5) 0.097 (6) −0.021 (5) 0.015 (5) −0.033 (4)
N11 0.053 (7) 0.045 (6) 0.053 (5) 0.000 (5) −0.008 (5) −0.003 (5)
N21 0.047 (5) 0.026 (4) 0.070 (6) −0.002 (4) −0.015 (5) −0.001 (4)
C31 0.055 (6) 0.085 (8) 0.063 (6) 0.000 0.007 (5) 0.000
C41 0.065 (6) 0.153 (13) 0.043 (5) 0.000 0.006 (5) 0.000
N30 0.047 (6) 0.035 (5) 0.058 (5) −0.002 (4) −0.011 (4) 0.005 (4)
N40 0.046 (5) 0.036 (5) 0.059 (6) −0.001 (4) −0.013 (4) 0.007 (4)
C32 0.054 (8) 0.124 (15) 0.091 (10) 0.021 (9) 0.018 (8) −0.005 (9)
C12 0.14 (2) 0.057 (9) 0.110 (14) 0.000 (12) −0.024 (13) −0.020 (9)
C13 0.14 (2) 0.057 (9) 0.110 (14) 0.000 (12) −0.024 (13) −0.020 (9)

Geometric parameters (Å, °)

Pt—C1 1.958 (10) N20—H20B 0.9000
Pt—C2 1.995 (11) C11—N11 1.340 (13)
Pt—C3i 1.999 (9) C11—C13 1.52 (3)
Pt—C3 1.999 (9) C11—C12 1.47 (2)
Ni—N21i 2.118 (9) C11—H11A 0.9800
Ni—N21 2.118 (9) C11—H11B 0.9800
Ni—N10 2.127 (9) N11—H11C 0.9000
Ni—N10i 2.127 (9) N11—H11D 0.9000
Ni—N30i 2.122 (10) N21—H21E 0.9000
Ni—N30 2.122 (10) N21—H21F 0.9000
Ni—N40i 2.137 (9) C31—N30 1.466 (12)
Ni—N40 2.137 (9) C31—C32 1.487 (16)
Ni—N11 2.142 (10) C31—C41 1.528 (16)
Ni—N11i 2.142 (10) C31—H31 0.9800
Ni—N20 2.142 (10) C41—N40 1.565 (13)
Ni—N20i 2.142 (10) C41—H41A 0.9700
C1—N1 1.154 (11) C41—H41B 0.9700
C2—N2 1.154 (13) N30—H30A 0.9000
C3—N3 1.124 (11) N30—H30B 0.9000
C21—N20 1.460 (13) N40—H40A 0.9000
C21—C11 1.474 (14) N40—H40B 0.9000
C21—N21 1.679 (13) C32—H32A 0.9600
C21—H21A 0.9700 C32—H32B 0.9600
C21—H21B 0.9700 C32—H32C 0.9600
C21—H21C 0.9700 C12—H12A 0.9600
C21—H21D 0.9700 C12—H12B 0.9600
N10—C11 1.509 (14) C12—H12C 0.9600
N10—H10A 0.9000 C13—H13A 0.9600
N10—H10B 0.9000 C13—H13B 0.9600
N20—H20A 0.9000 C13—H13C 0.9600
C1—Pt—C2 179.4 (3) N11—C11—C13 124.0 (13)
C1—Pt—C3i 89.5 (2) C21—C11—C13 93.8 (12)
C2—Pt—C3i 90.5 (2) C21—C11—C12 120.9 (13)
C1—Pt—C3 89.5 (2) N10—C11—C12 121.1 (13)
C2—Pt—C3 90.5 (2) C21—C11—H11A 99.6
C3i—Pt—C3 178.8 (4) N10—C11—H11A 99.6
N21i—Ni—N10 171.3 (4) C12—C11—H11A 99.6
N21—Ni—N10i 171.3 (4) N11—C11—H11B 111.4
N21—Ni—N30i 93.3 (4) C21—C11—H11B 111.4
N10i—Ni—N30i 93.3 (4) C13—C11—H11B 111.4
N21i—Ni—N30 93.3 (4) C11—N11—Ni 114.6 (7)
N10—Ni—N30 93.3 (4) C11—N11—H11C 108.6
N21—Ni—N40i 91.7 (4) Ni—N11—H11C 108.6
N10i—Ni—N40i 95.0 (4) C11—N11—H11D 108.6
N30i—Ni—N40i 80.8 (4) Ni—N11—H11D 108.6
N21i—Ni—N40 91.7 (4) H11C—N11—H11D 107.6
N10—Ni—N40 95.0 (4) C21—N21—Ni 101.6 (6)
N30—Ni—N40 80.8 (4) C21—N21—H21E 111.5
N21—Ni—N11 80.5 (4) Ni—N21—H21E 111.5
N10i—Ni—N11 93.3 (4) C21—N21—H21F 111.5
N30i—Ni—N11 94.4 (4) Ni—N21—H21F 111.5
N40i—Ni—N11 170.6 (4) H21E—N21—H21F 109.3
N21i—Ni—N11i 80.5 (4) N30—C31—C32 113.6 (8)
N10—Ni—N11i 93.3 (4) N30—C31—C41 104.1 (7)
N30—Ni—N11i 94.4 (4) C32—C31—C41 108.2 (9)
N40—Ni—N11i 170.6 (4) N30—C31—H31 110.2
N21i—Ni—N20 93.8 (4) C32—C31—H31 110.2
N10—Ni—N20 80.4 (4) C41—C31—H31 110.2
N30—Ni—N20 170.1 (4) C31—C41—N40 103.5 (7)
N40—Ni—N20 92.2 (4) C31—C41—H41A 111.1
N11i—Ni—N20 93.5 (4) N40—C41—H41A 111.1
N21—Ni—N20i 93.8 (4) C31—C41—H41B 111.1
N10i—Ni—N20i 80.4 (4) N40—C41—H41B 111.1
N30i—Ni—N20i 170.1 (4) H41A—C41—H41B 109.0
N40i—Ni—N20i 92.2 (4) C31—N30—Ni 109.5 (6)
N11—Ni—N20i 93.5 (4) C31—N30—H30A 109.8
N1—C1—Pt 178.6 (8) Ni—N30—H30A 109.8
N2—C2—Pt 177.6 (8) C31—N30—H30B 109.8
N3—C3—Pt 178.5 (8) Ni—N30—H30B 109.8
N20—C21—C11 106.4 (8) H30A—N30—H30B 108.2
C11—C21—N21 108.7 (7) C41—N40—Ni 105.2 (6)
N20—C21—H21A 110.4 C41—N40—H40A 110.7
C11—C21—H21A 110.4 Ni—N40—H40A 110.7
N20—C21—H21B 110.4 C41—N40—H40B 110.7
C11—C21—H21B 110.4 Ni—N40—H40B 110.7
H21A—C21—H21B 108.6 H40A—N40—H40B 108.8
C11—C21—H21C 110.0 C31—C32—H32A 109.5
N21—C21—H21C 110.0 C31—C32—H32B 109.5
C11—C21—H21D 110.0 H32A—C32—H32B 109.5
N21—C21—H21D 110.0 C31—C32—H32C 109.5
H21C—C21—H21D 108.3 H32A—C32—H32C 109.5
C11—N10—Ni 107.8 (7) H32B—C32—H32C 109.5
C11—N10—H10A 110.1 C11—C12—H12A 109.5
Ni—N10—H10A 110.1 C11—C12—H12B 109.5
C11—N10—H10B 110.1 H12A—C12—H12B 109.5
Ni—N10—H10B 110.1 C11—C12—H12C 109.5
H10A—N10—H10B 108.5 H12A—C12—H12C 109.5
C21—N20—Ni 108.8 (7) H12B—C12—H12C 109.5
C21—N20—H20A 109.9 C11—C13—H13A 109.5
Ni—N20—H20A 109.9 C11—C13—H13B 109.5
C21—N20—H20B 109.9 H13A—C13—H13B 109.5
Ni—N20—H20B 109.9 C11—C13—H13C 109.5
H20A—N20—H20B 108.3 H13A—C13—H13C 109.5
N11—C11—C21 102.7 (8) H13B—C13—H13C 109.5
C21—C11—N10 109.7 (7)

Symmetry codes: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N21—H21F···N2 0.90 2.51 3.311 (12) 148
N40—H40A···N2 0.90 2.30 3.160 (14) 160
N10—H10B···N3ii 0.90 2.40 3.193 (13) 148
N21—H21E···N3ii 0.90 2.24 3.066 (13) 152
N40—H40B···N3ii 0.90 2.21 3.098 (12) 169
N11—H11C···N1iii 0.90 2.48 3.342 (13) 159
N20—H20B···N1iii 0.90 2.11 3.005 (12) 174
N11—H11D···N1iv 0.90 2.46 3.242 (13) 145
N30—H30B···N3v 0.90 2.31 3.191 (11) 166

Symmetry codes: (ii) −x+1, y+1/2, −z; (iii) x+1/2, −y+1/2, −z+1/2; (iv) x+1, y, z; (v) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2111).

References

  1. Behrens, M., Scherb, S., Nather, C. & Bensch, W. (2003). Z. Anorg. Allg. Chem.629, 1367–1373.
  2. Brandenburg, K. (2001). DIAMOND Release 2.1e. Crystal Impact, D-53002 Bonn, Germany.
  3. Kuchár, J. & Černák, J. (2008). Acta Cryst. E64 Submitted.
  4. Lin, Z.-E., Zhang, J., Zhao, J.-T., Zheng, S.-T., Pan, C.-Y., Wang, G.-M. & Yang, G.-Y. (2005). Angew. Chem. Int. Ed.44, 6881–6884. [DOI] [PubMed]
  5. Nasanen, R., Hyle, M. & Butkevitsch, O. (1964). Suom. Kemistil.37B, 211–212.
  6. Saha, M. K., Dey, D. K., Samanta, B., Dey, S. K., Malik, K. M. A. & Mitra, S. (2005). Z. Naturforsch. Teil B, 60, 1043–1048.
  7. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  8. Stoe & Cie (1999). IPDS Software Version 2.90. Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066913/hy2111sup1.cif

e-64-0m235-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066913/hy2111Isup2.hkl

e-64-0m235-Isup2.hkl (105.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES