Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 21;64(Pt 1):m250–m251. doi: 10.1107/S1600536807067190

catena-Poly[bis­(sulfamethoxazolium) [[trichloridocadmate(II)]-μ-chlorido] monohydrate]

Annamalai Subashini a, Packianathan Thomas Muthiah a,*, Gabriele Bocelli b, Andrea Cantoni b
PMCID: PMC2915166  PMID: 21200590

Abstract

In the title compound, {(C10H12N3O3S)2[CdCl4]·H2O}n, the CdII atom is five-coordinate with a distorted trigonal–bipyramidal geometry formed by chloride ions. The Cd atom and two of the Cl atoms lie on a mirror plane. The cation is protonated on the amino group N atom; it is not coordinated to cadmium, but is hydrogen bonded to the chlorido ligands. Each water mol­ecule bridges two chlorido ligands, generating ring motifs along the –Cd—Cl—Cd– chains. The isoxazole unit and the amide groups are linked through a pair of N—H⋯N hydrogen bonds. The crystal structure is stabilized by N—H⋯O, O—H⋯Cl, C—H⋯N, N—H⋯Cl and C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Abramenko & Sergienko (2002); Bettinetti et al. (1982); Dai et al. (2002); Fawcett et al. (1978); Haridas et al. (1984); Kagi & Vallee (1960); Kálmán et al. (1981); Kendi et al. (2000); Schaffers & Keszler (1993); Singh et al. (1984); Subashini et al. (2007); Subha Nandhini et al. (2002); Takasuka & Nakai (2001); Tao et al. (2003); Yukawa et al. (1982).graphic file with name e-64-0m250-scheme1.jpg

Experimental

Crystal data

  • (C10H12N3O3S)2[CdCl4]·H2O

  • M r = 780.82

  • Orthorhombic, Inline graphic

  • a = 15.088 (2) Å

  • b = 35.028 (3) Å

  • c = 5.562 (3) Å

  • V = 2939.5 (17) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 11.07 mm−1

  • T = 293 K

  • 0.19 × 0.16 × 0.14 mm

Data collection

  • Siemens AED single-crystal diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.227, T max = 0.306 (expected range = 0.157–0.212)

  • 2834 measured reflections

  • 2834 independent reflections

  • 2470 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.111

  • S = 1.05

  • 2834 reflections

  • 203 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.64 e Å−3

Data collection: local program (Belletti et al., 1993); cell refinement: local program; data reduction: local program; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807067190/fi2052sup1.cif

e-64-0m250-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067190/fi2052Isup2.hkl

e-64-0m250-Isup2.hkl (136.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cd1—Cl2 2.4828 (17)
Cd1—Cl3 2.469 (2)
Cd1—Cl1i 2.902 (2)
Cd1—Cl2ii 2.4828 (17)
Cd1—Cl1 2.6688 (19)
Cl1—Cd1—Cl2ii 92.51 (3)
Cl2—Cd1—Cl3 113.69 (3)
Cl1i—Cd1—Cl2 84.90 (3)
Cl2—Cd1—Cl2ii 131.63 (4)
Cl1—Cd1—Cl2 92.51 (3)
Cl1—Cd1—Cl3 95.12 (5)
Cl1—Cd1—Cl1i 173.60 (5)
Cl1i—Cd1—Cl2ii 84.90 (3)
Cl1i—Cd1—Cl3 91.27 (5)
Cl2ii—Cd1—Cl3 113.69 (3)
Cd1—Cl1—Cd1iii 173.60 (7)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯Cl3i 0.96 2.11 3.035 (5) 161
O1W—H2W⋯Cl3 0.95 2.11 3.036 (5) 164
N4—H4A⋯Cl2iv 0.94 (5) 2.26 (5) 3.184 (4) 171 (4)
N4—H4B⋯O1Wv 0.91 (5) 1.86 (5) 2.758 (4) 169 (4)
N4—H4B⋯O1Wiii 0.91 (5) 1.86 (5) 2.758 (4) 169 (4)
N4—H4C⋯Cl2vi 0.85 (4) 2.49 (4) 3.196 (4) 141 (4)
N4—H4C⋯O1vi 0.85 (4) 2.33 (5) 2.871 (4) 122 (4)
N7—H7⋯N8vii 0.86 2.58 3.188 (5) 129
C2—H2⋯O2 0.93 2.55 2.911 (4) 103
C9—H9⋯O2 0.93 2.50 2.991 (4) 113
C9—H9⋯N8i 0.93 2.58 3.354 (5) 141

Symmetry codes: (i) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

AS thanks Bharathidasan University, Tiruchirappalli, Tamil Nadu, India, for the award of a Research Studentship (Ref. CCCD/ PhD-2/15504/2004).

supplementary crystallographic information

Comment

Polynuclear d10– metal complexes have been found to exhibit intriguing structural and photoluminescent properties (Dai et al., 2002; Tao et al., 2003). Chloride-bridged cadmium(II) polymeric complexes are of considerable interest, because they may act as photoactive materials. Cadmium is found to occur naturally in at least one protein, metallothionein (Kagi & Vallee, 1960). Sulfonamides constitute an important class of antimicrobial agents. The drug, 4-[5-methylisoxazol-3-yl)aminosulfonyl] aniline [Sulfamethoxazole (SMZ)] prevents the formation of dihydrofolic acid, a compound that bacteria must be able to make in order to survive. The two polymorphs of SMZ (Bettinetti et al., 1982) have already been reported in literature. Recently, the crystal structure of sulfamethoxazole hydrochloride (Subashini et al., 2007) has been reported from our laboratory. X-ray analysis reveals that (I) possesses a polynuclear structure with the Cd atom and two of the Cl atoms on a special positions(m). The Cd atom has trigonal bipyramidal coordination geometry formed by five chloride anions. The Cd1—Cl1, Cd1—Cl2, Cd1—Cl3, and Cd—Cli bond lengths are 2.669 (2), 2.4828 (17), 2.469 (2) and 2.902 (2)Å respectively. The mean Cd—Cl distance, 2.630 (2) Å, is in agreement with the corresponding distances reported in the structures of complexes of CdCl2 with 4-hydroxy-L-proline [2.620 (2) Å] (Yukawa et al., 1982), β-alanine [2.619 (5) Å] (Subha Nandhini et al., 2002) and L– alanine [2.61 (1) Å] (Schaffers & Keszler, 1993). The Cd—Cl distances reported for tetrameric cadmium(II) complex (Fawcett et al., 1978), viz. 2.946 (6) and 2.946 (5) Å, are longer compared to those in the present structure.

The atoms around the sulfonamide S atom in (I) are arranged in a slightly distorted tetrahedral configuration. The largest deviation is in the angle O1—S1—O2 [121.22 (17)°], but it confirms to the non-tetrahedral nature commonly observed in sulfonamides (Haridas et al., 1984; Kendi et al., 2000; Takasuka & Nakai, 2001). The S1—C1 distance of 1.760 (3)Å (I) is a normal single-bond value and matches well with those observed in other sulfonamides (Singh et al., 1984; Abramenko & Sergienko, 2002). In the present structure the dihedral angle between the isoxazole and amino phenyl plane is found to be 88.31 (18)°, whereas in neutral SMZ structures the dihedral angles are 73.1 (5)° for Form 1 and 79.6 (6)° for Form 2 (Bettinetti et al., 1982) respectively. The two torsion angles τ1 (C—C—S—N) and τ2 (C—S—N—C) defining the conformation of the sulfonamide group are reported to lie in the range 70–120° and 60–90°, respectively (Kálmán et al., 1981). The torsion angles τ1 is -81.9 (3)° (C6—C1—S1—N7) and τ2 is -73.6 (3)° (C1—S1—N7—C8). In neutral forms, the torsion angles τ1 are -76.5 (9)° (Form 1) and -78.5 (5)° (Form 2). The torsion angles τ2 are -56.1 (4)° in form 1 and -61.5 (8)° in form 2. In sulfamethoxazole hydrochloride the torsion angles are (τ1) 73.2 (3)° and (τ2) -71.2 (3)° (Subashini et al., 2007). The cation is protonated on the amine nitrogen (N4) atom. The drug is not coordinated to cadmium and the amino group (N4) of the drug is hydrogen bonded to the chloride ions. 4-ammonio group acts as a bridge between the sulfonamide oxygen atom and water molecules. Four smz cations and two water molecules are connected through N—H···O hydrogen bonds forming a 24 membered ring with graph-set R46(24) (Fig. 2). The isoxazole moiety and the amide groups are paired through a pair of N—H···N hydrogen bonds. A C—H···N hydrogen bond is observed between isoxazole carbon (C9) and nitrogen (N8). The water O1W atom does not participate in coordination with cadmium. Each water molecule bridges two chloride ions generating ring motifs along the –Cd—Cl—Cd- chains as shown in Fig 3.

Experimental

Hot ethanol solution of sulfamethoxazole (Qualigens, 63 mg) and an aqueous solution of cadmium chloride (CdCl2.2H2O, 98%) (SISCO CHEM, 54 mg) were mixed in a 1:1 stoichiometric ratio. On slow evaporation light brown prismatic crystals of the title complex were formed.

Refinement

The hydrogen atoms of the aromatic groups were positioned geometrically and refined using a riding model, with C—H=0.93–0.96Å and Uiso(H)= 1.5Ueq(C) for methyl hydrogen atoms and 1.2 Ueq(C) for all other hydrogen atoms. The hydrogen atoms of the water molecule and ammonio group (N4) were located in a difference Fourier maps and were refined, subject to bond length restraints of 0.96 Å(O—H), 1.5Å (H..H) and 0.86Å for ammonio N—H(H4C). The highest peak in the final difference map was found at a distance of 1.04Å from Cd1 and the deepest hole was -0.64Å from Cl1.

Figures

Fig. 1.

Fig. 1.

An ORTEP view of the asymmetric unit of (I) showing 30% probability displacement ellipsoids. Symmetry codes: (i)x,y,z + 1; (ii)x,-y + 1/2,z.

Fig. 2.

Fig. 2.

Packing view of compound (I). Symmetry codes: (iii)x,-y + 1/2,z - 1; (vi) x - 1/2,y,-z + 3/2.

Fig. 3.

Fig. 3.

Water molecules bridging chloride ions generating ring motifs along –Cd—Cl—Cd chains. Symmetry codes: (i) x,y,z + 1.

Crystal data

(C10H12N3O3S)2[CdCl4]·H2O F000 = 1568
Mr = 780.82 Dx = 1.764 Mg m3
Orthorhombic, Pnma Cu Kα radiation λ = 1.54178 Å
Hall symbol: -P 2ac 2n Cell parameters from 45 reflections
a = 15.088 (2) Å θ = 5.1–70.1º
b = 35.028 (3) Å µ = 11.07 mm1
c = 5.562 (3) Å T = 293 K
V = 2939.5 (17) Å3 Prism-like, light-brown
Z = 4 0.19 × 0.16 × 0.14 mm

Data collection

Siemens AED single-crystal diffractometer 2834 independent reflections
Radiation source: fine- focus sealed tube 2470 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.0000
T = 293 K θmax = 70.1º
ω–2θ scans θmin = 5.1º
Absorption correction: ψ scan(North et al., 1968) h = −2→18
Tmin = 0.227, Tmax = 0.306 k = −2→42
2834 measured reflections l = −6→6

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111   w = 1/[σ2(Fo2) + (0.0706P)2 + 2.0804P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
2834 reflections Δρmax = 1.04 e Å3
203 parameters Δρmin = −0.64 e Å3
4 restraints Extinction correction: shelxl, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00108 (10)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2> σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.47494 (5) 0.09076 (2) 0.89098 (17) 0.0348 (3)
O1 0.54498 (17) 0.11258 (8) 0.7896 (6) 0.0526 (9)
O2 0.47844 (16) 0.07794 (8) 1.1338 (5) 0.0433 (8)
O3 0.34703 (17) −0.03052 (8) 0.6783 (5) 0.0465 (8)
N4 0.1435 (2) 0.18175 (9) 0.7834 (6) 0.0367 (9)
N7 0.46903 (19) 0.05310 (9) 0.7171 (5) 0.0383 (9)
N8 0.39733 (19) −0.00044 (9) 0.5779 (6) 0.0450 (10)
C1 0.3753 (2) 0.11622 (9) 0.8542 (6) 0.0311 (8)
C2 0.3077 (2) 0.11213 (9) 1.0198 (6) 0.0376 (9)
C3 0.2303 (2) 0.13307 (10) 0.9951 (6) 0.0380 (10)
C4 0.2224 (2) 0.15783 (9) 0.8048 (6) 0.0322 (9)
C5 0.2887 (2) 0.16153 (10) 0.6346 (7) 0.0400 (10)
C6 0.3658 (2) 0.14054 (10) 0.6588 (6) 0.0403 (10)
C8 0.4174 (2) 0.02120 (9) 0.7613 (6) 0.0315 (8)
C9 0.3822 (2) 0.00750 (9) 0.9784 (6) 0.0348 (9)
C10 0.3395 (2) −0.02479 (9) 0.9160 (6) 0.0345 (9)
C11 0.2894 (3) −0.05362 (11) 1.0534 (8) 0.0500 (11)
Cd1 0.47373 (2) 0.25000 1.18772 (7) 0.0430 (1)
Cl1 0.48401 (11) 0.25000 0.7087 (2) 0.0541 (5)
Cl2 0.54023 (7) 0.18534 (3) 1.21780 (16) 0.0511 (3)
Cl3 0.31017 (11) 0.25000 1.2016 (3) 0.0795 (7)
O1W 0.2295 (3) 0.25000 1.7017 (8) 0.0513 (14)
H2 0.31420 0.09530 1.14790 0.0450*
H3 0.18440 0.13040 1.10560 0.0460*
H4A 0.119 (3) 0.1815 (15) 0.938 (10) 0.073 (15)*
H4B 0.165 (3) 0.2055 (13) 0.753 (7) 0.046 (11)*
H4C 0.118 (3) 0.1707 (14) 0.666 (7) 0.076 (17)*
H5 0.28150 0.17800 0.50500 0.0480*
H6 0.41080 0.14270 0.54540 0.0480*
H7 0.50050 0.05320 0.58820 0.0460*
H9 0.38720 0.01830 1.13060 0.0420*
H11A 0.22950 −0.05460 0.99580 0.0750*
H11B 0.28950 −0.04690 1.22070 0.0750*
H11C 0.31670 −0.07820 1.03310 0.0750*
H1W 0.26750 0.25000 1.83940 0.13 (4)*
H2W 0.26530 0.25000 1.56040 0.08 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0272 (4) 0.0305 (4) 0.0468 (5) 0.0038 (3) −0.0006 (3) −0.0050 (3)
O1 0.0300 (12) 0.0449 (15) 0.083 (2) −0.0033 (11) 0.0069 (12) −0.0036 (14)
O2 0.0447 (13) 0.0426 (14) 0.0427 (13) 0.0104 (11) −0.0108 (11) −0.0063 (11)
O3 0.0442 (14) 0.0511 (15) 0.0441 (14) −0.0099 (12) 0.0004 (11) −0.0139 (11)
N4 0.0343 (15) 0.0302 (15) 0.0456 (18) 0.0058 (12) −0.0034 (13) −0.0003 (13)
N7 0.0427 (16) 0.0326 (15) 0.0395 (15) 0.0050 (11) 0.0113 (12) −0.0059 (12)
N8 0.0426 (15) 0.0549 (19) 0.0374 (16) −0.0080 (14) 0.0044 (13) −0.0087 (14)
C1 0.0283 (14) 0.0255 (14) 0.0394 (16) 0.0020 (12) 0.0004 (12) −0.0023 (12)
C2 0.0384 (16) 0.0345 (16) 0.0400 (17) 0.0067 (14) 0.0072 (14) 0.0087 (14)
C3 0.0338 (16) 0.0388 (17) 0.0415 (17) 0.0041 (13) 0.0080 (14) 0.0067 (14)
C4 0.0295 (15) 0.0242 (15) 0.0428 (17) 0.0005 (11) −0.0017 (13) −0.0026 (12)
C5 0.0436 (18) 0.0335 (16) 0.0429 (17) 0.0035 (14) 0.0070 (15) 0.0110 (15)
C6 0.0387 (17) 0.0375 (18) 0.0447 (19) 0.0020 (14) 0.0112 (15) 0.0072 (15)
C8 0.0287 (14) 0.0343 (15) 0.0314 (15) 0.0091 (12) −0.0009 (12) −0.0036 (13)
C9 0.0388 (16) 0.0329 (16) 0.0328 (16) 0.0068 (13) −0.0004 (13) −0.0014 (13)
C10 0.0292 (14) 0.0356 (16) 0.0388 (17) 0.0064 (12) −0.0008 (13) −0.0018 (14)
C11 0.0441 (19) 0.045 (2) 0.061 (2) −0.0010 (16) 0.0025 (18) 0.0030 (18)
Cd1 0.0368 (2) 0.0306 (2) 0.0615 (3) 0.0000 0.0019 (2) 0.0000
Cl1 0.0672 (9) 0.0529 (8) 0.0422 (7) 0.0000 0.0054 (6) 0.0000
Cl2 0.0724 (6) 0.0427 (5) 0.0383 (5) 0.0192 (4) 0.0009 (4) −0.0018 (4)
Cl3 0.0402 (7) 0.1403 (19) 0.0581 (9) 0.0000 0.0057 (6) 0.0000
O1W 0.052 (2) 0.037 (2) 0.065 (3) 0.0000 0.000 (2) 0.0000

Geometric parameters (Å, °)

Cd1—Cl2 2.4828 (17) N7—H7 0.8599
Cd1—Cl3 2.469 (2) C1—C6 1.388 (5)
Cd1—Cl1i 2.902 (2) C1—C2 1.382 (5)
Cd1—Cl2ii 2.4828 (17) C2—C3 1.386 (4)
Cd1—Cl1 2.6688 (19) C3—C4 1.374 (5)
S1—C1 1.760 (3) C4—C5 1.383 (5)
S1—O1 1.421 (3) C5—C6 1.383 (5)
S1—O2 1.424 (3) C8—C9 1.404 (5)
S1—N7 1.638 (3) C9—C10 1.347 (4)
O3—N8 1.413 (4) C10—C11 1.475 (5)
O3—C10 1.342 (4) C2—H2 0.9299
O1W—H1W 0.9567 C3—H3 0.9306
O1W—H2W 0.9536 C5—H5 0.9296
N4—C4 1.461 (4) C6—H6 0.9298
N7—C8 1.384 (4) C9—H9 0.9303
N8—C8 1.306 (5) C11—H11A 0.9595
N4—H4A 0.94 (5) C11—H11B 0.9598
N4—H4B 0.91 (5) C11—H11C 0.9611
N4—H4C 0.85 (4)
Cd1···H1Wiii 3.6654 N8···H7xi 2.5778
Cd1···H2W 3.7665 C3···O1xii 3.293 (5)
Cd1···H4Aiv 3.86 (5) C4···O1xii 3.155 (4)
Cd1···H4Av 3.86 (5) C4···O1Wvi 3.281 (4)
Cd1···H1Wvi 3.6654 C4···O1Wiii 3.281 (4)
Cd1···H2Wii 3.7665 C5···O1Wvi 3.247 (4)
Cl1···Cd1iii 2.902 (2) C5···O1Wiii 3.247 (4)
Cl1···N4vii 3.392 (4) C8···C11xv 3.516 (6)
Cl1···N4viii 3.392 (4) C8···N8xi 3.450 (5)
Cl1···Cl2iii 3.648 (2) C8···C9x 3.500 (5)
Cl2···N4vii 3.196 (4) C9···O2 2.991 (4)
Cl2···N4v 3.184 (4) C9···N8i 3.354 (5)
Cl3···O1Wiii 3.035 (5) C9···C8x 3.500 (5)
Cl3···O1Wvi 3.035 (5) C10···O2x 3.330 (4)
Cl3···O1Wii 3.036 (5) C11···C8xvi 3.516 (6)
Cl3···O1W 3.036 (5) C11···N8xvi 3.397 (6)
Cl2···H3v 3.0659 C11···O1x 3.357 (5)
Cl2···H4Cvii 2.49 (4) C8···H11Axv 2.9089
Cl2···H4Av 2.26 (5) H1W···H4Bi 2.2477
Cl2···H6i 3.0601 H1W···Cd1i 3.6654
Cl3···H1Wiii 2.1149 H1W···H4Bix 2.2477
Cl3···H2W 2.1074 H1W···Cl3i 2.1149
Cl3···H5i 3.0652 H1W···Cl3i 2.1149
Cl3···H5ix 3.0652 H1W···Cd1i 3.6654
Cl3···H2Wii 2.1074 H2···O2 2.5528
Cl3···H1Wvi 2.1149 H2···H11Axvi 2.4923
S1···H9 3.1577 H2W···Cd1 3.7665
O1···C11x 3.357 (5) H2W···Cl3 2.1074
O1···C3vii 3.293 (5) H2W···H4Bix 2.4223
O1···N4vii 2.871 (4) H2W···H5ix 2.5525
O1···C4vii 3.155 (4) H2W···Cl3 2.1074
O1W···N4i 2.758 (4) H2W···H4Bi 2.4223
O1W···C4i 3.281 (4) H2W···H5i 2.5525
O1W···Cl3i 3.035 (5) H2W···Cd1 3.7665
O1W···Cl3 3.036 (5) H3···H4A 2.2464
O1W···C5ix 3.247 (4) H3···Cl2xiv 3.0659
O1W···C5i 3.247 (4) H4A···H3 2.2464
O1W···Cl3i 3.035 (5) H4A···Cd1xiv 3.86 (5)
O1W···N4ix 2.758 (4) H4A···Cl2xiv 2.26 (5)
O1W···Cl3 3.036 (5) H4A···Cd1xvii 3.86 (5)
O1W···C4ix 3.281 (4) H4B···H5 2.4332
O2···C9 2.991 (4) H4B···O1Wvi 1.86 (5)
O2···C10x 3.330 (4) H4B···O1Wiii 1.86 (5)
O1···H4Cvii 2.33 (5) H4B···H1Wiii 2.2477
O1···H11Cx 2.6035 H4B···H2Wiii 2.4223
O1···H6 2.6564 H4B···H1Wvi 2.2477
O1W···H5ix 2.8589 H4B···H2Wvi 2.4223
O1W···H5i 2.8589 H4C···Cl2xii 2.49 (4)
O1W···H4Bix 1.86 (5) H4C···O1xii 2.33 (5)
O1W···H4Bi 1.86 (5) H5···H2Wiii 2.5525
O2···H7i 2.6925 H5···Cl3iii 3.0652
O2···H2 2.5528 H5···O1Wiii 2.8589
O2···H9 2.5019 H5···Cl3vi 3.0652
O3···H11Biii 2.7496 H5···O1Wvi 2.8589
O3···H7xi 2.8496 H5···H4B 2.4332
N4···Cl1xii 3.392 (4) H5···H2Wvi 2.5525
N4···Cl2xii 3.196 (4) H6···O1 2.6564
N4···Cl1xiii 3.392 (4) H6···Cl2iii 3.0601
N4···O1xii 2.871 (4) H7···O3xi 2.8496
N4···O1Wvi 2.758 (4) H7···N8xi 2.5778
N4···Cl2xiv 3.184 (4) H7···O2iii 2.6925
N4···O1Wiii 2.758 (4) H9···O2 2.5019
N7···N8xi 3.188 (5) H9···N8i 2.5776
N8···C8xi 3.450 (5) H9···S1 3.1577
N8···C9iii 3.354 (5) H11A···N8xvi 2.7545
N8···N7xi 3.188 (5) H11A···C8xvi 2.9089
N8···C11xv 3.397 (6) H11A···H2xv 2.4923
N8···N8xi 3.217 (4) H11B···O3i 2.7496
N8···H11Axv 2.7545 H11C···O1x 2.6035
N8···H9iii 2.5776
Cl1—Cd1—Cl2ii 92.51 (3) S1—C1—C2 120.0 (2)
Cl2—Cd1—Cl3 113.69 (3) C1—C2—C3 120.1 (3)
Cl1i—Cd1—Cl2 84.90 (3) C2—C3—C4 118.9 (3)
Cl2—Cd1—Cl2ii 131.63 (4) N4—C4—C3 119.7 (3)
Cl1—Cd1—Cl2 92.51 (3) C3—C4—C5 121.6 (3)
Cl1—Cd1—Cl3 95.12 (5) N4—C4—C5 118.7 (3)
Cl1—Cd1—Cl1i 173.60 (5) C4—C5—C6 119.5 (3)
Cl1i—Cd1—Cl2ii 84.90 (3) C1—C6—C5 119.3 (3)
Cl1i—Cd1—Cl3 91.27 (5) N7—C8—C9 129.9 (3)
Cl2ii—Cd1—Cl3 113.69 (3) N8—C8—C9 112.7 (3)
Cd1—Cl1—Cd1vi 173.60 (7) N7—C8—N8 117.4 (3)
O1—S1—N7 103.85 (17) C8—C9—C10 104.3 (3)
O1—S1—C1 108.46 (16) C9—C10—C11 133.4 (3)
O2—S1—N7 107.94 (16) O3—C10—C11 116.8 (3)
O1—S1—O2 121.22 (17) O3—C10—C9 109.8 (3)
O2—S1—C1 107.56 (16) C1—C2—H2 119.91
N7—S1—C1 107.03 (15) C3—C2—H2 120.02
N8—O3—C10 108.9 (3) C2—C3—H3 120.56
H1W—O1W—H2W 108.68 C4—C3—H3 120.52
S1—N7—C8 125.2 (2) C6—C5—H5 120.25
O3—N8—C8 104.4 (3) C4—C5—H5 120.28
H4A—N4—H4C 121 (4) C1—C6—H6 120.37
C4—N4—H4A 104 (3) C5—C6—H6 120.33
H4B—N4—H4C 116 (4) C8—C9—H9 127.81
H4A—N4—H4B 109 (4) C10—C9—H9 127.93
C4—N4—H4B 104 (3) H11B—C11—H11C 109.45
C4—N4—H4C 100 (3) H11A—C11—H11B 109.51
C8—N7—H7 117.52 H11A—C11—H11C 109.42
S1—N7—H7 117.31 C10—C11—H11A 109.53
S1—C1—C6 119.3 (2) C10—C11—H11B 109.49
C2—C1—C6 120.6 (3) C10—C11—H11C 109.44
O1—S1—N7—C8 171.7 (3) O3—N8—C8—C9 −0.8 (4)
O2—S1—N7—C8 41.8 (3) S1—C1—C6—C5 −177.8 (3)
C1—S1—N7—C8 −73.7 (3) S1—C1—C2—C3 178.0 (3)
O1—S1—C1—C2 −150.0 (3) C6—C1—C2—C3 −1.5 (5)
O1—S1—C1—C6 29.6 (3) C2—C1—C6—C5 1.7 (5)
O2—S1—C1—C2 −17.2 (3) C1—C2—C3—C4 −0.2 (5)
O2—S1—C1—C6 162.3 (3) C2—C3—C4—N4 −176.5 (3)
N7—S1—C1—C2 98.6 (3) C2—C3—C4—C5 1.8 (5)
N7—S1—C1—C6 −81.9 (3) C3—C4—C5—C6 −1.6 (5)
N8—O3—C10—C11 −179.5 (3) N4—C4—C5—C6 176.7 (3)
C10—O3—N8—C8 0.5 (3) C4—C5—C6—C1 −0.2 (5)
N8—O3—C10—C9 0.0 (4) N8—C8—C9—C10 0.8 (4)
S1—N7—C8—N8 158.6 (3) N7—C8—C9—C10 −178.6 (3)
S1—N7—C8—C9 −22.0 (5) C8—C9—C10—O3 −0.5 (4)
O3—N8—C8—N7 178.7 (3) C8—C9—C10—C11 178.9 (4)

Symmetry codes: (i) x, y, z+1; (ii) x, −y+1/2, z; (iii) x, y, z−1; (iv) x+1/2, −y+1/2, −z+5/2; (v) x+1/2, y, −z+5/2; (vi) x, −y+1/2, z−1; (vii) x+1/2, y, −z+3/2; (viii) x+1/2, −y+1/2, −z+3/2; (ix) x, −y+1/2, z+1; (x) −x+1, −y, −z+2; (xi) −x+1, −y, −z+1; (xii) x−1/2, y, −z+3/2; (xiii) x−1/2, −y+1/2, −z+3/2; (xiv) x−1/2, y, −z+5/2; (xv) −x+1/2, −y, z−1/2; (xvi) −x+1/2, −y, z+1/2; (xvii) x−1/2, −y+1/2, −z+5/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1W···Cl3i 0.96 2.11 3.035 (5) 161
O1W—H2W···Cl3 0.95 2.11 3.036 (5) 164
N4—H4A···Cl2xiv 0.94 (5) 2.26 (5) 3.184 (4) 171 (4)
N4—H4B···O1Wiii 0.91 (5) 1.86 (5) 2.758 (4) 169 (4)
N4—H4B···O1Wvi 0.91 (5) 1.86 (5) 2.758 (4) 169 (4)
N4—H4C···Cl2xii 0.85 (4) 2.49 (4) 3.196 (4) 141 (4)
N4—H4C···O1xii 0.85 (4) 2.33 (5) 2.871 (4) 122 (4)
N7—H7···N8xi 0.86 2.58 3.188 (5) 129
C2—H2···O2 0.93 2.55 2.911 (4) 103
C9—H9···O2 0.93 2.50 2.991 (4) 113
C9—H9···N8i 0.93 2.58 3.354 (5) 141

Symmetry codes: (i) x, y, z+1; (xiv) x−1/2, y, −z+5/2; (iii) x, y, z−1; (vi) x, −y+1/2, z−1; (xii) x−1/2, y, −z+3/2; (xi) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2052).

References

  1. Abramenko, V. L. & Sergienko, V. S. (2002). Russ. J. Inorg. Chem.47, 905–914.
  2. Belletti, D., Cantoni, A. & Pasquinelli, G. (1993). Gestione on Line di Diffractometro a Cristallo Singolo Siemens AED con Personal Computer Internal Report 1-93. Centro di Studio per la Strutturistica Diffrattometrica del CNR Parma, Italy.
  3. Bettinetti, G. P., Giordano, F., La Manna, A., Giuseppetti, G. & Tadini, C. (1982). Cryst. Struct. Commun 11, 821–828.
  4. Dai, J.-C., Wu, X.-T., Fu, Z.-Y., Cui, C.-P., Wu, S.-M., Du, W.-X., Wu, L.-M., Zhang, H.-H. & Sun, Q.-Q. (2002). Inorg. Chem.41, 1391–1396. [DOI] [PubMed]
  5. Fawcett, T. G., Ou, C. C., Potenza, J. A. & Schugar, H. J. (1978). J. Am. Chem. Soc.100, 2058–2062.
  6. Haridas, M., Tiwari, R. K. & Singh, T. P. (1984). Acta Cryst. C40, 658–660.
  7. Kagi, J. H. R. & Vallee, B. L. J. (1960). J. Biol. Chem.235, 3460–3460.
  8. Kálmán, A., Czugler, M. & Argay, Gy. (1981). Acta Cryst. B37, 868–877.
  9. Kendi, E., Özbey, S., Bozdağ, O. & Ertan, R. (2000). Acta Cryst. C56, 457–458. [DOI] [PubMed]
  10. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  11. Schaffers, K. I. & Keszler, D. A. (1993). Acta Cryst. C49, 1156–1158.
  12. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  13. Singh, T. P., Patel, U. & Haridas, M. (1984). Acta Cryst. C40, 2088–2091.
  14. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  15. Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2007). Acta Cryst. E63, o4312–o4313. [DOI] [PMC free article] [PubMed]
  16. Subha Nandhini, M., Krishnakumar, R. V., Sivakumar, K. & Natarajan, S. (2002). Acta Cryst. E58, m307–m309. [DOI] [PubMed]
  17. Takasuka, M. & Nakai, H. (2001). Vib. Spectrosc.25, 197–204.
  18. Tao, J., Yin, X., Jiang, Y.-B., Yang, L.-F., Huang, R.-B. & Zheng, L.-S. (2003). Eur. J. Inorg. Chem. pp. 2678–2682.
  19. Yukawa, Y., Inomata, Y., Takeuchi, T., Shimoi, M. & Ouchi, A. (1982). Bull. Chem. Soc. Jpn, 55, 3135–3137.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807067190/fi2052sup1.cif

e-64-0m250-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067190/fi2052Isup2.hkl

e-64-0m250-Isup2.hkl (136.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES