Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 21;64(Pt 1):m252–m253. doi: 10.1107/S1600536807067207

Aqua­(4-hydroxy­pyridine-2,6-dicarboxyl­ato)(1,10-phenanothroline)copper(II) 4.5-hydrate

Hossein Aghabozorg a,*, Elham Motyeian a, Janet Soleimannejad b, Mohammad Ghadermazi c, Jafar Attar Gharamaleki a
PMCID: PMC2915167  PMID: 21200591

Abstract

The title compound, [Cu(C7H3NO5)(C12H8N2)(H2O)]·4.5H2O or [Cu(hypydc)(phen)(H2O)]·4.5H2O (phen is 1,10-phenanthroline and hypydcH2 is 4-hydroxy­pyridine-2,6-dicarboxylic acid), was obtained by the reaction of copper(II) nitrate hexa­hydrate with the proton-transfer compound (phenH)2(hypydc) in aqueous solution. Both the cationic and the anionic fragments of the proton-transfer compound are involved in complexation. Each CuII atom has a distorted octa­hedral geometry. It is hexa­coordinated by three O atoms and three N atoms, from one phen fragment (as bidentate ligand), one (hypydc)2− unit (as tridentate ligand) and a water mol­ecule. In the crystal structure, O—H⋯O and C—H⋯O hydrogen bonds, and π–π stacking inter­actions [centroid-to-centroid distance 3.5642 (11) Å] between the phen ring systems, contribute to the formation of a three-dimensional supra­molecular structure.

Related literature

For related literature, see: Aghabozorg, Attar Gharamaleki, Ghadermazi et al. (2007); Aghabozorg, Attar Gharamaleki, Ghasemikhah et al. (2007); Aghabozorg, Daneshvar et al. (2007).graphic file with name e-64-0m252-scheme1.jpg

Experimental

Crystal data

  • [Cu(C7H3NO5)(C12H8N2)(H2O)]·4.5H2O

  • M r = 523.94

  • Orthorhombic, Inline graphic

  • a = 18.686 (4) Å

  • b = 44.033 (8) Å

  • c = 10.3812 (18) Å

  • V = 8542 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 296 (2) K

  • 0.34 × 0.24 × 0.12 mm

Data collection

  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.709, T max = 0.881

  • 59661 measured reflections

  • 10800 independent reflections

  • 9609 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.066

  • S = 1.01

  • 10800 reflections

  • 300 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983), with 4504 Friedel pairs

  • Flack parameter: 0.007 (4)

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067207/su2032sup1.cif

e-64-0m252-sup1.cif (25KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067207/su2032Isup2.hkl

e-64-0m252-Isup2.hkl (323KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O5W 0.85 1.73 2.5771 (14) 174
O6—H6D⋯O1i 0.85 1.88 2.7059 (12) 162
O6—H6C⋯O4ii 0.85 1.76 2.6048 (11) 174
O1W—H1C⋯O1iii 0.85 1.97 2.8154 (12) 171
O2W—H2C⋯O3iv 0.85 2.37 3.1062 (16) 145
O2W—H2D⋯O4W 0.85 1.90 2.7470 (16) 172
O3W—H3D⋯O2v 0.85 1.93 2.7757 (13) 175
O3W—H3C⋯O4 0.85 1.90 2.7496 (13) 175
O4W—H4D⋯O3W 0.85 1.84 2.6834 (15) 171
O4W—H4C⋯O5i 0.85 2.26 3.0835 (16) 165
O5W—H5C⋯O1W 0.85 2.03 2.8604 (15) 164
O5W—H5D⋯O2Wvi 0.85 1.91 2.7204 (15) 159
C1—H1⋯O5vii 0.93 2.41 3.1610 (18) 137
C3—H3⋯O3viii 0.93 2.25 3.130 (2) 158
C8—H8⋯O3Wix 0.93 2.42 3.315 (2) 161
C10—H10⋯O6 0.93 2.50 2.9995 (17) 114
C10—H10⋯O5Wx 0.93 2.42 3.1809 (19) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic; (x) Inline graphic.

Acknowledgments

Financial support from Ilam University and the Teacher Training University is gratefully acknowledged.

supplementary crystallographic information

Comment

Non-covalent interactions, including hydrogen bonds, are of great importance in stabilizing structures in the solid state. We have synthesized several proton transfer compounds, some with remaining sites as electron donors that can coordinate to metal ions (Aghabozorg, Attar Gharamaleki, Ghadermazi et al., 2007; Aghabozorg, Attar Gharamaleki, Ghasemikhah et al., 2007; Aghabozorg, Daneshvar et al., 2007 and references therein). A wide range of different hydrogen bonds were observed in these compounds and water molecules of crystallization were also involved in hydrogen bonding. Here, we report on the synthesis and crystal structure of the title compound, (I).

The title complex crystallizes in the orthorhombic space group Fdd2, with sixteen molecules in the unit cell. The molecular structure is shown in Fig. 1. Both the cationic and anionic fragments of the starting proton transfer compound are involved in complexation. Each CuII atom has a distorted octahedral geometry. It is coordinated by one 1,10-phenanthroline ligand, (phen as bidentate ligand), one 4-hydroxypyridine-2,6-dicarboxylate group, [(hypydc)2- as a tridentate ligand] and one coordinated water molecule. The axial bond lengths, Cu1—O2 and Cu1—O3 [2.3679 (9) and 2.3205 (11) Å, respectively] are longer than the equitoral metal-ligand bond lengths [1.9996 (8) - 2.0370 (9) Å], probabaly due to the Jahn-Teller effect. The dihedral angle between the planes passing through the (hypydc)2– and (phen) fragments is 83.41 (4)°, indicating that these to units are almost perpendicular to one another.

In the crystal weak π-π stacking interactions [3.5642 (11) Å [1/4 + x, 1/4 - y, 1/4 + z] between the aromatic rings of the coordinated (phen) fragments are present (Fig. 2). The water molecules of crystallization are involved in the formation of hydrogen bonds, forming chains (Fig. 3 and Table 1). O—H···O and C—H···O hydrogen bonds, ion pairing and π–π stacking interactions all contribute to the formation of a supramolecular structure (Fig. 4).

Experimental

The proton transfer compound, (phenH)2(hypydc), was prepared by the reaction of 4-hydroxypyridine-2,6-dicarboxylic acid, hypydcH2, with 1,10-phenanthroline, (phen). Cu(NO3)2.6H2O (125 mg, 0.5 mmol) in water (20 ml) and the proton transfer compound, (phenH)2(hypydc) (500 mg, 1.0 mmol) in water (20 ml), in a 1:2 molar ratio, were mixed. Blue crystals of (I) were obtained by the slow evaporation at room temperature.

Refinement

The H-atoms were included in calculated positions and treated as riding atoms: O—H = 0.85 Å and C—H = 0.93 - 0.95 Å with U ĩso~(H) = 1.2U~eq~ (parent O or C-atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure of compound (I), showing the atom numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the π-π stacking interactions between the aromatic rings of the 1,10-phenanthroline (phen) fragments with distances of 3.5639 (11) Å [1/4 + x, 1/4 - y, 1/4 + z].

Fig. 3.

Fig. 3.

A view of the chain of hydrogen bonded water mlecules in compound (I) with hydrogen bonds shown as dashed lines.

Fig. 4.

Fig. 4.

The crystal packing of compound (I), with hydrogen bonds shown as dashed lines.

Crystal data

[Cu(C7H3NO5)(C12H8N2)(H2O)]·4.5H2O F000 = 4320
Mr = 523.94 Dx = 1.630 Mg m3
Orthorhombic, Fdd2 Mo Kα radiation λ = 0.71073 Å
Hall symbol: F 2 -2d Cell parameters from 30613 reflections
a = 18.686 (4) Å θ = 2.3–36.4º
b = 44.033 (8) Å µ = 1.09 mm1
c = 10.3812 (18) Å T = 296 (2) K
V = 8542 (3) Å3 Block, pale-blue
Z = 16 0.34 × 0.24 × 0.12 mm

Data collection

Bruker SMART 1000 diffractometer 10800 independent reflections
Radiation source: fine-focus sealed tube 9609 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.032
Detector resolution: 100 pixels mm-1 θmax = 38.6º
T = 296(2) K θmin = 1.9º
ω scans h = −30→31
Absorption correction: multi-scan(SADABS; Bruker, 1998) k = −72→69
Tmin = 0.709, Tmax = 0.881 l = −17→17
59661 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027   w = 1/[σ2(Fo2) + (0.0367P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.066 (Δ/σ)max = 0.002
S = 1.01 Δρmax = 0.50 e Å3
10800 reflections Δρmin = −0.33 e Å3
300 parameters Extinction correction: none
1 restraint Absolute structure: Flack (1983), 4504 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.007 (4)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.260204 (6) 0.052661 (3) 1.031738 (12) 0.01475 (3)
N1 0.33349 (5) 0.086905 (19) 1.03093 (10) 0.02096 (15)
N2 0.19432 (5) 0.08711 (2) 1.07530 (9) 0.01972 (16)
N3 0.32981 (5) 0.019941 (19) 0.98387 (8) 0.01433 (14)
O1 0.37788 (5) −0.00342 (2) 1.29870 (8) 0.02511 (17)
O2 0.29904 (5) 0.03122 (2) 1.22904 (7) 0.02473 (16)
O3 0.26351 (6) 0.054290 (19) 0.80826 (9) 0.02719 (19)
O4 0.30653 (5) 0.026752 (19) 0.64661 (7) 0.02505 (17)
O5 0.47567 (5) −0.04570 (2) 0.88292 (8) 0.02523 (17)
H5A 0.4872 −0.0449 0.8038 0.030*
O6 0.17682 (4) 0.024272 (16) 1.02325 (8) 0.01793 (12)
H6D 0.1690 0.0174 0.9480 0.022*
H6C 0.1854 0.0080 1.0643 0.022*
C1 0.40278 (7) 0.08587 (3) 1.00820 (13) 0.0302 (3)
H1 0.4249 0.0670 1.0000 0.036*
C2 0.44453 (9) 0.11231 (4) 0.99596 (15) 0.0413 (4)
H2 0.4934 0.1109 0.9799 0.050*
C3 0.41253 (9) 0.14022 (3) 1.00797 (14) 0.0401 (4)
H3 0.4394 0.1579 0.9992 0.048*
C4 0.33932 (8) 0.14188 (3) 1.03349 (13) 0.0307 (2)
C5 0.29961 (11) 0.16990 (3) 1.05229 (13) 0.0414 (4)
H5 0.3235 0.1884 1.0460 0.050*
C6 0.22947 (10) 0.16978 (3) 1.07841 (15) 0.0397 (4)
H6 0.2059 0.1882 1.0906 0.048*
C7 0.18977 (8) 0.14200 (3) 1.08811 (12) 0.0312 (3)
C8 0.11568 (10) 0.14002 (4) 1.11384 (15) 0.0404 (4)
H8 0.0889 0.1575 1.1272 0.048*
C9 0.08381 (8) 0.11233 (4) 1.11891 (14) 0.0357 (3)
H9 0.0351 0.1108 1.1360 0.043*
C10 0.12452 (7) 0.08614 (3) 1.09834 (12) 0.0265 (2)
H10 0.1019 0.0673 1.1009 0.032*
C11 0.22684 (7) 0.11447 (2) 1.07039 (11) 0.0222 (2)
C12 0.30164 (6) 0.11451 (2) 1.04432 (10) 0.02191 (19)
C13 0.34558 (6) 0.01134 (3) 1.21286 (9) 0.01798 (18)
C14 0.36451 (5) 0.00388 (2) 1.07388 (9) 0.01544 (16)
C15 0.41397 (5) −0.01821 (2) 1.04245 (10) 0.01813 (17)
H15 0.4377 −0.0290 1.1065 0.022*
C16 0.42769 (5) −0.02401 (2) 0.91269 (10) 0.01755 (17)
C17 0.39083 (6) −0.00763 (2) 0.81932 (10) 0.01653 (16)
H17 0.3987 −0.0112 0.7322 0.020*
C18 0.34222 (6) 0.01404 (2) 0.85910 (9) 0.01394 (16)
C19 0.30013 (6) 0.03315 (2) 0.76368 (9) 0.01689 (17)
O1W 0.5000 0.0000 0.45689 (13) 0.0277 (2)*
H1C 0.5384 0.0026 0.4143 0.033*
O2W 0.13216 (6) 0.15930 (2) 0.41663 (14) 0.0457 (3)
H2C 0.0889 0.1635 0.4349 0.055*
H2D 0.1336 0.1403 0.4299 0.055*
O3W 0.24433 (5) 0.05872 (2) 0.44855 (9) 0.02822 (19)
H3D 0.2586 0.0500 0.3801 0.034*
H3C 0.2628 0.0496 0.5126 0.034*
O4W 0.13298 (7) 0.09704 (2) 0.43343 (14) 0.0474 (3)
H4D 0.1683 0.0853 0.4474 0.057*
H4C 0.0974 0.0857 0.4167 0.057*
O5W 0.51596 (5) −0.04686 (2) 0.64555 (9) 0.03011 (19)
H5C 0.5200 −0.0331 0.5886 0.036*
H5D 0.5500 −0.0593 0.6321 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01572 (5) 0.01249 (5) 0.01605 (5) 0.00093 (4) 0.00172 (5) −0.00189 (4)
N1 0.0232 (4) 0.0187 (4) 0.0210 (4) −0.0040 (3) 0.0044 (4) −0.0048 (3)
N2 0.0230 (4) 0.0173 (4) 0.0189 (4) 0.0048 (3) 0.0015 (3) −0.0016 (3)
N3 0.0163 (4) 0.0136 (3) 0.0131 (3) 0.0001 (3) 0.0000 (3) −0.0003 (3)
O1 0.0224 (4) 0.0370 (5) 0.0159 (4) 0.0013 (3) −0.0015 (3) 0.0065 (3)
O2 0.0276 (4) 0.0306 (4) 0.0161 (3) 0.0069 (3) 0.0018 (3) −0.0014 (3)
O3 0.0394 (5) 0.0240 (4) 0.0181 (4) 0.0176 (3) −0.0018 (3) −0.0007 (3)
O4 0.0408 (5) 0.0205 (4) 0.0138 (3) 0.0097 (3) −0.0028 (3) −0.0010 (3)
O5 0.0265 (4) 0.0256 (4) 0.0236 (4) 0.0144 (3) 0.0046 (3) 0.0027 (3)
O6 0.0200 (3) 0.0177 (3) 0.0161 (3) −0.0011 (2) −0.0013 (3) 0.0014 (3)
C1 0.0249 (5) 0.0303 (6) 0.0355 (7) −0.0083 (4) 0.0074 (5) −0.0087 (5)
C2 0.0321 (7) 0.0500 (9) 0.0418 (8) −0.0241 (6) 0.0079 (6) −0.0082 (6)
C3 0.0560 (9) 0.0340 (7) 0.0305 (7) −0.0281 (6) 0.0005 (6) −0.0032 (5)
C4 0.0498 (7) 0.0198 (5) 0.0224 (5) −0.0125 (4) −0.0037 (5) −0.0018 (4)
C5 0.0805 (12) 0.0144 (5) 0.0292 (7) −0.0099 (6) −0.0146 (6) 0.0009 (4)
C6 0.0702 (11) 0.0155 (5) 0.0333 (6) 0.0079 (6) −0.0147 (7) −0.0050 (4)
C7 0.0498 (8) 0.0179 (5) 0.0258 (5) 0.0117 (5) −0.0070 (5) −0.0043 (4)
C8 0.0524 (9) 0.0340 (7) 0.0347 (7) 0.0262 (7) −0.0054 (6) −0.0075 (5)
C9 0.0300 (7) 0.0421 (8) 0.0352 (7) 0.0180 (6) 0.0017 (5) −0.0053 (6)
C10 0.0229 (5) 0.0303 (6) 0.0264 (5) 0.0083 (4) 0.0028 (4) −0.0017 (4)
C11 0.0333 (6) 0.0153 (4) 0.0181 (4) 0.0040 (4) −0.0016 (4) −0.0024 (3)
C12 0.0327 (5) 0.0158 (4) 0.0173 (4) −0.0043 (4) −0.0003 (4) −0.0026 (3)
C13 0.0176 (5) 0.0235 (5) 0.0129 (4) −0.0025 (4) 0.0001 (3) 0.0006 (3)
C14 0.0147 (4) 0.0165 (4) 0.0151 (4) −0.0011 (3) −0.0001 (3) 0.0017 (3)
C15 0.0165 (4) 0.0202 (4) 0.0178 (4) 0.0027 (3) −0.0002 (3) 0.0043 (3)
C16 0.0164 (4) 0.0159 (4) 0.0204 (4) 0.0031 (3) 0.0015 (3) 0.0024 (3)
C17 0.0174 (4) 0.0158 (4) 0.0163 (4) 0.0019 (3) 0.0010 (3) −0.0001 (3)
C18 0.0166 (4) 0.0118 (4) 0.0135 (4) 0.0005 (3) −0.0009 (3) 0.0002 (3)
C19 0.0220 (4) 0.0132 (4) 0.0155 (4) 0.0028 (3) −0.0021 (3) 0.0006 (3)
O2W 0.0372 (6) 0.0250 (5) 0.0747 (8) 0.0000 (4) 0.0068 (6) −0.0087 (5)
O3W 0.0340 (5) 0.0279 (4) 0.0227 (4) 0.0101 (3) 0.0024 (3) 0.0032 (3)
O4W 0.0441 (7) 0.0248 (5) 0.0735 (9) 0.0095 (4) −0.0168 (6) −0.0081 (5)
O5W 0.0278 (5) 0.0364 (5) 0.0262 (4) 0.0049 (4) 0.0036 (3) −0.0030 (3)

Geometric parameters (Å, °)

Cu1—O6 1.9996 (8) C5—H5 0.9300
Cu1—N3 2.0036 (9) C6—C7 1.434 (2)
Cu1—N2 2.0052 (9) C6—H6 0.9300
Cu1—N1 2.0370 (9) C7—C11 1.4082 (16)
Cu1—O3 2.3219 (10) C7—C8 1.413 (2)
Cu1—O2 2.3693 (9) C8—C9 1.358 (3)
N1—C1 1.3168 (16) C8—H8 0.9300
N1—C12 1.3604 (14) C9—C10 1.3979 (17)
N2—C10 1.3267 (16) C9—H9 0.9300
N2—C11 1.3505 (15) C10—H10 0.9300
N3—C14 1.3392 (13) C11—C12 1.4237 (17)
N3—C18 1.3412 (12) C13—C14 1.5213 (14)
O1—C13 1.2572 (13) C14—C15 1.3810 (14)
O2—C13 1.2453 (14) C15—C16 1.3948 (15)
O3—C19 1.2445 (12) C15—H15 0.9300
O4—C19 1.2533 (12) C16—C17 1.3906 (14)
O5—C16 1.3460 (13) C17—C18 1.3806 (14)
O5—H5A 0.8500 C17—H17 0.9300
O6—H6D 0.8500 C18—C19 1.5194 (14)
O6—H6C 0.8500 O1W—H1C 0.8500
C1—C2 1.4072 (18) O2W—H2C 0.8501
C1—H1 0.9300 O2W—H2D 0.8501
C2—C3 1.372 (3) O3W—H3D 0.8500
C2—H2 0.9300 O3W—H3C 0.8500
C3—C4 1.395 (2) O4W—H4D 0.8501
C3—H3 0.9300 O4W—H4C 0.8498
C4—C12 1.4005 (15) O5W—H5C 0.8501
C4—C5 1.453 (2) O5W—H5D 0.8499
C5—C6 1.338 (3)
O6—Cu1—N3 92.60 (4) C5—C6—H6 119.2
O6—Cu1—N2 90.26 (4) C7—C6—H6 119.2
N3—Cu1—N2 176.79 (4) C11—C7—C8 116.97 (13)
O6—Cu1—N1 170.57 (3) C11—C7—C6 118.07 (14)
N3—Cu1—N1 95.44 (4) C8—C7—C6 124.96 (13)
N2—Cu1—N1 81.59 (4) C9—C8—C7 119.51 (12)
O6—Cu1—O3 89.77 (4) C9—C8—H8 120.2
N3—Cu1—O3 75.95 (3) C7—C8—H8 120.2
N2—Cu1—O3 102.61 (3) C8—C9—C10 119.75 (14)
N1—Cu1—O3 87.43 (4) C8—C9—H9 120.1
O6—Cu1—O2 91.59 (3) C10—C9—H9 120.1
N3—Cu1—O2 74.28 (3) N2—C10—C9 122.41 (13)
N2—Cu1—O2 107.13 (4) N2—C10—H10 118.8
N1—Cu1—O2 95.31 (4) C9—C10—H10 118.8
O3—Cu1—O2 150.22 (3) N2—C11—C7 122.80 (12)
C1—N1—C12 118.64 (10) N2—C11—C12 116.73 (9)
C1—N1—Cu1 129.51 (8) C7—C11—C12 120.46 (11)
C12—N1—Cu1 111.52 (7) N1—C12—C4 122.74 (12)
C10—N2—C11 118.55 (10) N1—C12—C11 116.62 (9)
C10—N2—Cu1 128.30 (9) C4—C12—C11 120.64 (11)
C11—N2—Cu1 112.97 (8) O2—C13—O1 127.08 (10)
C14—N3—C18 119.19 (9) O2—C13—C14 116.23 (9)
C14—N3—Cu1 121.39 (7) O1—C13—C14 116.69 (10)
C18—N3—Cu1 119.41 (7) N3—C14—C15 122.08 (9)
C13—O2—Cu1 112.17 (7) N3—C14—C13 115.80 (9)
C19—O3—Cu1 111.29 (7) C15—C14—C13 122.12 (9)
C16—O5—H5A 111.1 C14—C15—C16 118.69 (9)
Cu1—O6—H6D 113.4 C14—C15—H15 120.7
Cu1—O6—H6C 111.0 C16—C15—H15 120.7
H6D—O6—H6C 101.1 O5—C16—C17 122.54 (10)
N1—C1—C2 122.19 (13) O5—C16—C15 118.30 (9)
N1—C1—H1 118.9 C17—C16—C15 119.16 (9)
C2—C1—H1 118.9 C18—C17—C16 118.41 (9)
C3—C2—C1 119.41 (15) C18—C17—H17 120.8
C3—C2—H2 120.3 C16—C17—H17 120.8
C1—C2—H2 120.3 N3—C18—C17 122.45 (9)
C2—C3—C4 119.43 (12) N3—C18—C19 115.64 (8)
C2—C3—H3 120.3 C17—C18—C19 121.90 (9)
C4—C3—H3 120.3 O3—C19—O4 125.54 (10)
C3—C4—C12 117.59 (12) O3—C19—C18 117.16 (9)
C3—C4—C5 124.80 (12) O4—C19—C18 117.27 (9)
C12—C4—C5 117.60 (13) H2C—O2W—H2D 102.1
C6—C5—C4 121.61 (12) H3D—O3W—H3C 108.3
C6—C5—H5 119.2 H4D—O4W—H4C 106.6
C4—C5—H5 119.2 H5C—O5W—H5D 106.2
C5—C6—C7 121.61 (13)
O6—Cu1—N1—C1 −149.7 (2) C7—C8—C9—C10 −0.2 (2)
N3—Cu1—N1—C1 −1.22 (12) C11—N2—C10—C9 −0.67 (18)
N2—Cu1—N1—C1 −179.99 (13) Cu1—N2—C10—C9 −175.40 (10)
O3—Cu1—N1—C1 −76.84 (12) C8—C9—C10—N2 0.9 (2)
O2—Cu1—N1—C1 73.44 (12) C10—N2—C11—C7 −0.28 (16)
O6—Cu1—N1—C12 23.5 (3) Cu1—N2—C11—C7 175.23 (9)
N3—Cu1—N1—C12 171.95 (8) C10—N2—C11—C12 −179.47 (11)
N2—Cu1—N1—C12 −6.81 (8) Cu1—N2—C11—C12 −3.95 (13)
O3—Cu1—N1—C12 96.34 (8) C8—C7—C11—N2 0.96 (17)
O2—Cu1—N1—C12 −113.39 (8) C6—C7—C11—N2 −178.83 (11)
O6—Cu1—N2—C10 5.57 (10) C8—C7—C11—C12 −179.88 (12)
N3—Cu1—N2—C10 158.3 (7) C6—C7—C11—C12 0.32 (17)
N1—Cu1—N2—C10 −179.17 (11) C1—N1—C12—C4 0.74 (18)
O3—Cu1—N2—C10 95.39 (10) Cu1—N1—C12—C4 −173.26 (9)
O2—Cu1—N2—C10 −86.17 (10) C1—N1—C12—C11 −179.24 (11)
O6—Cu1—N2—C11 −169.41 (8) Cu1—N1—C12—C11 6.76 (13)
N3—Cu1—N2—C11 −16.7 (7) C3—C4—C12—N1 −0.05 (19)
N1—Cu1—N2—C11 5.85 (8) C5—C4—C12—N1 −178.80 (11)
O3—Cu1—N2—C11 −79.58 (8) C3—C4—C12—C11 179.93 (12)
O2—Cu1—N2—C11 98.86 (8) C5—C4—C12—C11 1.18 (18)
O6—Cu1—N3—C14 −93.65 (8) N2—C11—C12—N1 −2.01 (16)
N2—Cu1—N3—C14 113.7 (7) C7—C11—C12—N1 178.79 (10)
N1—Cu1—N3—C14 91.27 (8) N2—C11—C12—C4 178.01 (10)
O3—Cu1—N3—C14 177.24 (8) C7—C11—C12—C4 −1.19 (17)
O2—Cu1—N3—C14 −2.73 (7) Cu1—O2—C13—O1 177.76 (10)
O6—Cu1—N3—C18 86.62 (8) Cu1—O2—C13—C14 −3.11 (12)
N2—Cu1—N3—C18 −66.1 (7) C18—N3—C14—C15 1.41 (15)
N1—Cu1—N3—C18 −88.46 (8) Cu1—N3—C14—C15 −178.33 (7)
O3—Cu1—N3—C18 −2.49 (8) C18—N3—C14—C13 −178.14 (9)
O2—Cu1—N3—C18 177.53 (8) Cu1—N3—C14—C13 2.13 (12)
O6—Cu1—O2—C13 95.47 (8) O2—C13—C14—N3 1.10 (14)
N3—Cu1—O2—C13 3.22 (8) O1—C13—C14—N3 −179.67 (10)
N2—Cu1—O2—C13 −173.77 (8) O2—C13—C14—C15 −178.44 (10)
N1—Cu1—O2—C13 −90.96 (8) O1—C13—C14—C15 0.78 (15)
O3—Cu1—O2—C13 3.16 (12) N3—C14—C15—C16 −0.40 (15)
O6—Cu1—O3—C19 −86.68 (9) C13—C14—C15—C16 179.12 (10)
N3—Cu1—O3—C19 6.06 (8) C14—C15—C16—O5 −179.62 (10)
N2—Cu1—O3—C19 −176.89 (8) C14—C15—C16—C17 −0.57 (15)
N1—Cu1—O3—C19 102.33 (9) O5—C16—C17—C18 179.53 (10)
O2—Cu1—O3—C19 6.11 (13) C15—C16—C17—C18 0.52 (15)
C12—N1—C1—C2 −0.7 (2) C14—N3—C18—C17 −1.47 (15)
Cu1—N1—C1—C2 172.03 (11) Cu1—N3—C18—C17 178.27 (8)
N1—C1—C2—C3 0.0 (2) C14—N3—C18—C19 179.53 (9)
C1—C2—C3—C4 0.7 (2) Cu1—N3—C18—C19 −0.73 (12)
C2—C3—C4—C12 −0.7 (2) C16—C17—C18—N3 0.50 (15)
C2—C3—C4—C5 178.00 (14) C16—C17—C18—C19 179.45 (9)
C3—C4—C5—C6 −178.98 (15) Cu1—O3—C19—O4 173.59 (10)
C12—C4—C5—C6 −0.3 (2) Cu1—O3—C19—C18 −8.18 (12)
C4—C5—C6—C7 −0.5 (2) N3—C18—C19—O3 6.64 (14)
C5—C6—C7—C11 0.5 (2) C17—C18—C19—O3 −172.37 (10)
C5—C6—C7—C8 −179.23 (14) N3—C18—C19—O4 −174.98 (10)
C11—C7—C8—C9 −0.7 (2) C17—C18—C19—O4 6.01 (15)
C6—C7—C8—C9 179.07 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5A···O5W 0.85 1.73 2.5771 (14) 174
O6—H6D···O1i 0.85 1.88 2.7059 (12) 162
O6—H6C···O4ii 0.85 1.76 2.6048 (11) 174
O1W—H1C···O1iii 0.85 1.97 2.8154 (12) 171
O2W—H2C···O3iv 0.85 2.37 3.1062 (16) 145
O2W—H2D···O4W 0.85 1.90 2.7470 (16) 172
O3W—H3D···O2v 0.85 1.93 2.7757 (13) 175
O3W—H3C···O4 0.85 1.90 2.7496 (13) 175
O4W—H4D···O3W 0.85 1.84 2.6834 (15) 171
O4W—H4C···O5i 0.85 2.26 3.0835 (16) 165
O5W—H5C···O1W 0.85 2.03 2.8604 (15) 164
O5W—H5D···O2Wvi 0.85 1.91 2.7204 (15) 159
C1—H1···O5vii 0.93 2.41 3.1610 (18) 137
C3—H3···O3viii 0.93 2.25 3.130 (2) 158
C8—H8···O3Wix 0.93 2.42 3.315 (2) 161
C10—H10···O6 0.93 2.50 2.9995 (17) 114
C10—H10···O5Wx 0.93 2.42 3.1809 (19) 139

Symmetry codes: (i) −x+1/2, −y, z−1/2; (ii) −x+1/2, −y, z+1/2; (iii) −x+1, −y, z−1; (iv) x−1/4, −y+1/4, z−1/4; (v) x, y, z−1; (vi) −x+3/4, y−1/4, z+1/4; (vii) −x+1, −y, z; (viii) x+1/4, −y+1/4, z+1/4; (ix) x−1/4, −y+1/4, z+3/4; (x) −x+1/2, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2032).

References

  1. Aghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007). Acta Cryst. E63, m1803–m1804.
  2. Aghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007). Acta Cryst. E63, m1710–m1711.
  3. Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469. [DOI] [PMC free article] [PubMed]
  4. Bruker (1998). SADABS (Version 2004/1), SAINT (Version 6.01) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2005). SHELXTL Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067207/su2032sup1.cif

e-64-0m252-sup1.cif (25KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067207/su2032Isup2.hkl

e-64-0m252-Isup2.hkl (323KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES