Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o131. doi: 10.1107/S160053680706309X

5-Amino-3-(4-pyrid­yl)isoxazole

Zheng Yao a, Jian-Cheng Deng a,*
PMCID: PMC2915201  PMID: 21200696

Abstract

In the title compound, C8H7N3O, there are two independent mol­ecules in the asymmetric unit, in which the angles between the pyridine ring and the isoxazole ring are 35.8 (6) and 10.6 (2)°. The crystal packing is stabilized by N—H⋯N hydrogen bonds, which result in the mol­ecules forming a two-dimensional supra­molecular layer.

Related literature

The title compound was prepared according to a known procedure (Schmidt et al., 1966). For hydrogen-bond motif definitions, see: Bernstein et al. (1995).graphic file with name e-64-0o131-scheme1.jpg

Experimental

Crystal data

  • C8H7N3O

  • M r = 161.17

  • Monoclinic, Inline graphic

  • a = 14.6411 (13) Å

  • b = 10.9272 (10) Å

  • c = 10.0060 (9) Å

  • β = 106.9870 (10)°

  • V = 1531.0 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 187 (2) K

  • 0.42 × 0.18 × 0.10 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.960, T max = 0.990

  • 8396 measured reflections

  • 3018 independent reflections

  • 2509 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.120

  • S = 1.02

  • 3018 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680706309X/bv2079sup1.cif

e-64-0o131-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706309X/bv2079Isup2.hkl

e-64-0o131-Isup2.hkl (148.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N4 0.88 2.09 2.970 (2) 177
N3—H3B⋯N2i 0.88 2.20 3.077 (2) 169
N6—H6A⋯N1ii 0.88 2.12 2.976 (2) 164
N6—H6B⋯N5iii 0.88 2.09 2.970 (2) 174

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Changchun, China.

supplementary crystallographic information

Comment

The title compound, (I), is an intermediate for our drug development program. Its structure is shown in Fig. 1. The asymmetric unit was formed by two independent molecules, in which the angles between the pyridine ring and the isoxazole ring are 35.8 (6)° and 10.6 (2)° respectively. Four types of N—H···N hydrogen bonds in the structure are present, which generate two rings, R44(18) and R44(28) (Bernstein et al., 1995). These hydrogen bonds extend the monomer into a two-dimensional supramolecular layer (Fig. 2 and Table 1).

Experimental

The title compound was prepared according to a known procedure (Schmidt et al., 1966). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a ethanol solution at room temperature.

Refinement

H atoms were found on difference Fourier maps and refined as riding, with C—H distance of 0.95 Å and N—H distance of 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

A view of (I), with the atom-labeling scheme and 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

View of the three-dimensional supramolecular structure in (I). Dashed lines indicate hydrogen bonds.

Crystal data

C8H7N3O F000 = 672
Mr = 161.17 Dx = 1.398 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2830 reflections
a = 14.6411 (13) Å θ = 2.4–25.9º
b = 10.9272 (10) Å µ = 0.10 mm1
c = 10.0060 (9) Å T = 187 (2) K
β = 106.9870 (10)º Block, colourless
V = 1531.0 (2) Å3 0.42 × 0.18 × 0.10 mm
Z = 8

Data collection

Bruker APEX CCD area-detector diffractometer 3018 independent reflections
Radiation source: fine-focus sealed tube 2509 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.025
T = 187(2) K θmax = 26.0º
φ and ω scans θmin = 1.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −18→14
Tmin = 0.960, Tmax = 0.990 k = −10→13
8396 measured reflections l = −12→12

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043   w = 1/[σ2(Fo2) + (0.07P)2 + 0.2315P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.23 e Å3
3018 reflections Δρmin = −0.23 e Å3
218 parameters Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0047 (10)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.46333 (7) 0.85688 (9) 0.20940 (11) 0.0346 (3)
O2 0.00420 (8) 0.88480 (9) 0.77638 (11) 0.0336 (3)
N1 0.79693 (9) 0.83254 (13) −0.07659 (13) 0.0383 (3)
N2 0.52225 (9) 0.80823 (11) 0.13072 (13) 0.0337 (3)
N3 0.44141 (10) 1.03237 (12) 0.31848 (14) 0.0388 (3)
H3A 0.3946 0.9950 0.3407 0.047*
H3B 0.4558 1.1086 0.3447 0.047*
N4 0.28672 (10) 0.90935 (13) 0.40458 (14) 0.0398 (3)
N5 0.06798 (9) 0.93321 (11) 0.70626 (14) 0.0359 (3)
N6 −0.06051 (10) 0.70441 (11) 0.81376 (14) 0.0377 (3)
H6A −0.0927 0.7458 0.8606 0.045*
H6B −0.0675 0.6246 0.8048 0.045*
C1 0.72429 (11) 0.75481 (15) −0.08875 (15) 0.0358 (4)
H1 0.7222 0.6830 −0.1430 0.043*
C2 0.65244 (11) 0.77244 (14) −0.02749 (15) 0.0346 (4)
H2 0.6026 0.7141 −0.0398 0.042*
C3 0.65383 (10) 0.87660 (13) 0.05244 (14) 0.0271 (3)
C4 0.72841 (11) 0.95824 (14) 0.06540 (16) 0.0368 (4)
H4 0.7322 1.0310 0.1188 0.044*
C5 0.79718 (12) 0.93253 (15) −0.00027 (18) 0.0419 (4)
H5 0.8477 0.9896 0.0096 0.050*
C6 0.58040 (10) 0.89855 (13) 0.12468 (13) 0.0270 (3)
C7 0.49043 (11) 0.97363 (13) 0.24510 (14) 0.0289 (3)
C8 0.56482 (10) 1.00383 (13) 0.19470 (14) 0.0292 (3)
H8 0.5984 1.0793 0.2049 0.035*
C9 0.29569 (12) 0.80896 (15) 0.48351 (17) 0.0399 (4)
H9 0.3461 0.7540 0.4845 0.048*
C10 0.23625 (11) 0.77991 (14) 0.56385 (16) 0.0351 (4)
H10 0.2452 0.7065 0.6170 0.042*
C11 0.16304 (10) 0.86076 (13) 0.56504 (14) 0.0286 (3)
C12 0.15291 (11) 0.96543 (14) 0.48390 (15) 0.0331 (4)
H12 0.1038 1.0227 0.4820 0.040*
C13 0.21520 (12) 0.98536 (15) 0.40568 (16) 0.0379 (4)
H13 0.2068 1.0570 0.3496 0.045*
C14 0.09696 (10) 0.83758 (13) 0.65003 (14) 0.0272 (3)
C15 0.05754 (11) 0.72799 (13) 0.67909 (15) 0.0310 (3)
H15 0.0689 0.6476 0.6514 0.037*
C16 −0.00128 (10) 0.76260 (13) 0.75652 (14) 0.0274 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0346 (6) 0.0288 (6) 0.0488 (6) −0.0019 (4) 0.0251 (5) −0.0016 (5)
O2 0.0403 (6) 0.0237 (5) 0.0474 (6) −0.0025 (4) 0.0294 (5) −0.0020 (4)
N1 0.0352 (7) 0.0459 (8) 0.0394 (7) 0.0043 (6) 0.0198 (6) 0.0003 (6)
N2 0.0330 (7) 0.0304 (7) 0.0443 (7) 0.0000 (5) 0.0216 (6) −0.0034 (5)
N3 0.0443 (8) 0.0306 (7) 0.0545 (8) −0.0018 (6) 0.0347 (7) −0.0025 (6)
N4 0.0369 (8) 0.0452 (8) 0.0452 (7) −0.0045 (6) 0.0242 (6) −0.0018 (6)
N5 0.0415 (8) 0.0270 (7) 0.0502 (8) −0.0038 (6) 0.0303 (6) 0.0000 (6)
N6 0.0488 (8) 0.0247 (7) 0.0527 (8) −0.0031 (6) 0.0353 (7) −0.0018 (6)
C1 0.0382 (9) 0.0391 (9) 0.0328 (8) 0.0022 (7) 0.0146 (7) −0.0053 (7)
C2 0.0331 (8) 0.0370 (9) 0.0361 (8) −0.0039 (7) 0.0138 (7) −0.0038 (7)
C3 0.0270 (7) 0.0287 (8) 0.0268 (7) 0.0030 (6) 0.0098 (6) 0.0026 (6)
C4 0.0364 (9) 0.0340 (9) 0.0458 (9) −0.0031 (7) 0.0209 (7) −0.0060 (7)
C5 0.0382 (9) 0.0418 (9) 0.0538 (10) −0.0065 (7) 0.0263 (8) −0.0063 (8)
C6 0.0251 (7) 0.0283 (7) 0.0284 (7) 0.0005 (6) 0.0088 (6) 0.0043 (6)
C7 0.0321 (8) 0.0258 (8) 0.0313 (7) 0.0020 (6) 0.0129 (6) 0.0030 (6)
C8 0.0308 (8) 0.0269 (7) 0.0343 (7) −0.0030 (6) 0.0164 (6) −0.0006 (6)
C9 0.0351 (9) 0.0421 (10) 0.0491 (9) 0.0051 (7) 0.0225 (7) 0.0015 (8)
C10 0.0353 (8) 0.0328 (8) 0.0417 (8) 0.0037 (7) 0.0181 (7) 0.0040 (7)
C11 0.0270 (7) 0.0300 (8) 0.0312 (7) −0.0035 (6) 0.0124 (6) −0.0026 (6)
C12 0.0336 (8) 0.0314 (8) 0.0398 (8) 0.0011 (6) 0.0193 (7) 0.0023 (7)
C13 0.0431 (9) 0.0347 (9) 0.0423 (9) −0.0030 (7) 0.0225 (7) 0.0038 (7)
C14 0.0266 (7) 0.0268 (7) 0.0301 (7) 0.0015 (6) 0.0113 (6) 0.0017 (6)
C15 0.0387 (8) 0.0223 (7) 0.0386 (8) 0.0016 (6) 0.0214 (7) 0.0006 (6)
C16 0.0309 (7) 0.0227 (7) 0.0322 (7) 0.0010 (6) 0.0150 (6) 0.0016 (6)

Geometric parameters (Å, °)

O1—C7 1.3527 (17) C3—C4 1.386 (2)
O1—N2 1.4295 (14) C3—C6 1.4798 (18)
O2—C16 1.3490 (17) C4—C5 1.382 (2)
O2—N5 1.4237 (14) C4—H4 0.9500
N1—C5 1.332 (2) C5—H5 0.9500
N1—C1 1.339 (2) C6—C8 1.3999 (19)
N2—C6 1.3164 (18) C7—C8 1.3677 (19)
N3—C7 1.3319 (18) C8—H8 0.9500
N3—H3A 0.8800 C9—C10 1.383 (2)
N3—H3B 0.8800 C9—H9 0.9500
N4—C9 1.336 (2) C10—C11 1.392 (2)
N4—C13 1.339 (2) C10—H10 0.9500
N5—C14 1.3145 (17) C11—C12 1.385 (2)
N6—C16 1.3322 (18) C11—C14 1.4847 (18)
N6—H6A 0.8800 C12—C13 1.3816 (19)
N6—H6B 0.8800 C12—H12 0.9500
C1—C2 1.377 (2) C13—H13 0.9500
C1—H1 0.9500 C14—C15 1.3963 (19)
C2—C3 1.388 (2) C15—C16 1.3692 (19)
C2—H2 0.9500 C15—H15 0.9500
C7—O1—N2 108.58 (10) N3—C7—O1 115.87 (13)
C16—O2—N5 108.34 (10) N3—C7—C8 134.62 (14)
C5—N1—C1 116.20 (13) O1—C7—C8 109.51 (12)
C6—N2—O1 104.42 (11) C7—C8—C6 104.48 (12)
C7—N3—H3A 120.0 C7—C8—H8 127.8
C7—N3—H3B 120.0 C6—C8—H8 127.8
H3A—N3—H3B 120.0 N4—C9—C10 124.22 (15)
C9—N4—C13 116.52 (13) N4—C9—H9 117.9
C14—N5—O2 104.82 (10) C10—C9—H9 117.9
C16—N6—H6A 120.0 C9—C10—C11 118.44 (14)
C16—N6—H6B 120.0 C9—C10—H10 120.8
H6A—N6—H6B 120.0 C11—C10—H10 120.8
N1—C1—C2 124.11 (14) C12—C11—C10 118.03 (13)
N1—C1—H1 117.9 C12—C11—C14 120.03 (13)
C2—C1—H1 117.9 C10—C11—C14 121.94 (13)
C1—C2—C3 119.13 (14) C13—C12—C11 119.13 (14)
C1—C2—H2 120.4 C13—C12—H12 120.4
C3—C2—H2 120.4 C11—C12—H12 120.4
C4—C3—C2 117.40 (13) N4—C13—C12 123.65 (15)
C4—C3—C6 120.98 (13) N4—C13—H13 118.2
C2—C3—C6 121.60 (13) C12—C13—H13 118.2
C5—C4—C3 119.20 (14) N5—C14—C15 112.83 (12)
C5—C4—H4 120.4 N5—C14—C11 117.08 (12)
C3—C4—H4 120.4 C15—C14—C11 130.08 (12)
N1—C5—C4 123.96 (15) C16—C15—C14 104.33 (12)
N1—C5—H5 118.0 C16—C15—H15 127.8
C4—C5—H5 118.0 C14—C15—H15 127.8
N2—C6—C8 113.02 (12) N6—C16—O2 115.30 (12)
N2—C6—C3 118.22 (13) N6—C16—C15 135.03 (14)
C8—C6—C3 128.72 (13) O2—C16—C15 109.67 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···N4 0.88 2.09 2.970 (2) 177
N3—H3B···N2i 0.88 2.20 3.077 (2) 169
N6—H6A···N1ii 0.88 2.12 2.976 (2) 164
N6—H6B···N5iii 0.88 2.09 2.970 (2) 174

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x−1, y, z+1; (iii) −x, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2079).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (1997). SHELXTL Version 5.1. Bruker AXS Inc., Madison, Wisconsion, USA.
  3. Bruker (1998). SMART Version 5.0. Bruker AXS Inc., Madison, Wisconsion, USA.
  4. Bruker (2003). SAINT Version 6. Bruker AXS, Inc., Madison, Wisconsion, USA.
  5. Schmidt, P., Eichenberger, K. & Wilhelm, M. (1966). US Patent 3 277 105.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680706309X/bv2079sup1.cif

e-64-0o131-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706309X/bv2079Isup2.hkl

e-64-0o131-Isup2.hkl (148.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES