Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o141. doi: 10.1107/S1600536807063350

4,4′-Bis(benzimidazol-1-yl)biphen­yl

Zuo-Xi Li a, Yi Zuo a, Tong-Liang Hu a,*
PMCID: PMC2915210  PMID: 21200706

Abstract

The mol­ecule of the title compound, C26H18N4, resides on a crystallographic inversion centre with a dihedral angle of 44.94 (5)° between the benzimidazole ring system and the benzene ring. The primary hydrogen bond is C—H⋯N and inversion-related pairs of these generate a chain of rings along the c-axis direction; π⋯π stacking involving the benzimidazole groups with inter­planar separations of ca 3.4 Å complete the inter­actions.

Related literature

For related literature, see: Bu et al. (2007); Buchwald et al. (2001); Cristau et al. (2004); Su et al. (2003).graphic file with name e-64-0o141-scheme1.jpg

Experimental

Crystal data

  • C26H18N4

  • M r = 386.44

  • Monoclinic, Inline graphic

  • a = 19.628 (4) Å

  • b = 6.8964 (14) Å

  • c = 13.760 (3) Å

  • β = 90.74 (3)°

  • V = 1862.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.26 × 0.22 × 0.10 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.904, T max = 1.000 (expected range = 0.897–0.992)

  • 9091 measured reflections

  • 1644 independent reflections

  • 1415 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.103

  • S = 1.10

  • 1644 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807063350/gg2046sup1.cif

e-64-0o141-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063350/gg2046Isup2.hkl

e-64-0o141-Isup2.hkl (81.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N1i 0.93 2.61 3.425 (2) 147

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Nankai University for supporting this work.

supplementary crystallographic information

Comment

In recent years, benzimidazole derivatives have been found a wide range of application in the area of coordination chemistry, because they exhibit a strong networking ability (Bu et al., 2007; Su et al., 2003). The title compound has been designed for building polymer architectures. We report here the structure and conformation, towards an understanding of the ligand coordination. As shown in Fig. 1, the title compound has trans-conformation and therefore a tendency to trans-coordination. The molecule resides on an inversion centre, and the dihedral angle between the benzimidazole ring and the phenyl ring is 40.97 (17)°. There are weak H-bonding interactions in the crystal structure of (I) (C6—H6···N1B, 3.425 (17) Å, C—H···N of 146.82 (13)°, B= x,-y + 2,z + 1/2) (Fig. 2).

Experimental

The ligand 4,4'-di(benzimidazol-1-yl)biphenyl was prepared by a modified method (Buchwald et al., 2001; Cristau et al., 2004). A mixture of 4,4'-dibromobiphenyl (3.75 g, 12.0 mmol), benzimidazole (7.08 g, 60.0 mmol), CuI (0.47 g, 2.5 mmol), 1,10-phenanthroline (1.19 g, 6.0 mmol), and K2CO3 (13.27 g, 96.0 mmol) was suspended in DMF (120 ml) and refluxed for 4 days to afford (I) as light-yellow powder, yield: 30% (based on 4,4'-dibromobiphenyl). M.p.: 566 K. MS (ESI): m/z=387.45. Anal calcd for C26H18N4: C, 80.81%; H, 4.69%; N, 14.50%. Found: C, 80.56%; H, 4.48%; N, 14.31%. Single crystals were obtained by recrystallizing from a mixture of CHCl3 and CH3OH (1:1).

Refinement

C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93Å and Uiso(H) = 1.2Ueq.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius [symmetry code: (A) -x + 1,-y + 2,-z + 1].

Fig. 2.

Fig. 2.

The crystal packing for (I) [symmetry code: (B) x,-y + 2,z + 1/2].

Crystal data

C26H18N4 F000 = 808
Mr = 386.44 Dx = 1.378 Mg m3
Monoclinic, C2/c Melting point: 566 K
Hall symbol: -c 2yc Mo Kα radiation λ = 0.71073 Å
a = 19.628 (4) Å Cell parameters from 2932 reflections
b = 6.8964 (14) Å θ = 2.6–28.7º
c = 13.760 (3) Å µ = 0.08 mm1
β = 90.74 (3)º T = 293 (2) K
V = 1862.4 (7) Å3 Block, colorless
Z = 4 0.26 × 0.22 × 0.10 mm

Data collection

Bruker SMART 1000 CCD diffractometer 1644 independent reflections
Radiation source: fine-focus sealed tube 1415 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.037
Detector resolution: 9 pixels mm-1 θmax = 25.0º
T = 293(2) K θmin = 3.0º
ω scans h = −23→23
Absorption correction: multi-scan(SADABS; Bruker, 1998) k = −8→8
Tmin = 0.904, Tmax = 1.000 l = −16→16
9091 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037   w = 1/[σ2(Fo2) + (0.0718P)2 + 0.0391P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103 (Δ/σ)max = 0.001
S = 1.10 Δρmax = 0.18 e Å3
1644 reflections Δρmin = −0.17 e Å3
137 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.032 (4)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.22326 (5) 0.98108 (14) 0.82891 (7) 0.0259 (3)
N2 0.28767 (5) 0.99037 (13) 0.69471 (7) 0.0196 (3)
C1 0.28458 (6) 0.99959 (16) 0.79430 (8) 0.0233 (3)
H1 0.3229 1.0175 0.8337 0.028*
C2 0.18197 (6) 0.95587 (16) 0.74690 (8) 0.0217 (3)
C3 0.11196 (6) 0.91962 (17) 0.74020 (9) 0.0271 (3)
H3 0.0854 0.9134 0.7956 0.033*
C4 0.08336 (6) 0.89337 (17) 0.64895 (9) 0.0289 (4)
H4 0.0369 0.8694 0.6429 0.035*
C5 0.12330 (6) 0.90221 (16) 0.56532 (9) 0.0269 (3)
H5 0.1025 0.8845 0.5049 0.032*
C6 0.19250 (6) 0.93632 (16) 0.56982 (8) 0.0221 (3)
H6 0.2189 0.9410 0.5142 0.027*
C7 0.22077 (6) 0.96335 (15) 0.66211 (9) 0.0197 (3)
C8 0.34804 (6) 0.99569 (15) 0.63884 (8) 0.0191 (3)
C9 0.35123 (6) 1.10302 (16) 0.55419 (8) 0.0239 (3)
H9 0.3136 1.1741 0.5331 0.029*
C10 0.41052 (6) 1.10460 (16) 0.50080 (9) 0.0234 (3)
H10 0.4118 1.1770 0.4438 0.028*
C11 0.46851 (6) 1.00092 (15) 0.52969 (8) 0.0195 (3)
C12 0.46409 (6) 0.89818 (18) 0.61685 (8) 0.0268 (3)
H12 0.5021 0.8305 0.6396 0.032*
C13 0.40515 (6) 0.89417 (18) 0.67017 (8) 0.0256 (3)
H13 0.4037 0.8229 0.7275 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0289 (6) 0.0284 (6) 0.0204 (6) −0.0051 (4) 0.0060 (5) −0.0016 (4)
N2 0.0212 (6) 0.0207 (5) 0.0170 (6) −0.0025 (4) 0.0038 (4) −0.0006 (4)
C1 0.0271 (7) 0.0255 (6) 0.0172 (7) −0.0033 (5) 0.0019 (5) −0.0006 (5)
C2 0.0255 (6) 0.0185 (6) 0.0211 (7) −0.0009 (5) 0.0058 (5) −0.0011 (5)
C3 0.0249 (7) 0.0249 (7) 0.0318 (8) −0.0006 (5) 0.0103 (5) −0.0007 (5)
C4 0.0213 (6) 0.0244 (7) 0.0409 (8) −0.0001 (5) 0.0012 (6) 0.0000 (5)
C5 0.0279 (7) 0.0235 (7) 0.0292 (7) 0.0013 (5) −0.0044 (5) −0.0002 (5)
C6 0.0267 (6) 0.0191 (6) 0.0206 (7) 0.0014 (5) 0.0015 (5) 0.0008 (5)
C7 0.0212 (6) 0.0155 (6) 0.0226 (7) −0.0004 (4) 0.0025 (5) 0.0011 (4)
C8 0.0203 (6) 0.0191 (6) 0.0178 (6) −0.0045 (4) 0.0034 (5) −0.0033 (4)
C9 0.0256 (6) 0.0217 (7) 0.0245 (7) 0.0049 (5) 0.0046 (5) 0.0031 (5)
C10 0.0298 (7) 0.0203 (6) 0.0203 (6) 0.0009 (5) 0.0059 (5) 0.0037 (5)
C11 0.0196 (7) 0.0204 (6) 0.0185 (7) −0.0070 (4) 0.0003 (5) −0.0025 (4)
C12 0.0166 (6) 0.0412 (8) 0.0227 (7) −0.0021 (5) −0.0016 (5) 0.0071 (5)
C13 0.0218 (6) 0.0369 (7) 0.0181 (7) −0.0055 (5) −0.0012 (5) 0.0078 (5)

Geometric parameters (Å, °)

C9—C8 1.3822 (16) C5—C6 1.3790 (17)
C9—C10 1.3842 (16) C5—C4 1.4021 (18)
C9—H9 0.9300 C5—H5 0.9300
N2—C1 1.3740 (15) C4—C3 1.3806 (18)
N2—C7 1.3945 (15) C4—H4 0.9300
N2—C8 1.4212 (15) C13—C12 1.3781 (16)
C10—C11 1.3974 (17) C13—C8 1.3856 (17)
C10—H10 0.9300 C13—H13 0.9300
N1—C1 1.3063 (16) C12—H12 0.9300
N1—C2 1.3916 (16) C2—C3 1.3986 (17)
C11—C12 1.3967 (17) C3—H3 0.9300
C11—C11i 1.491 (2) C6—H6 0.9300
C7—C6 1.3918 (17) C1—H1 0.9300
C7—C2 1.4024 (17)
C8—C9—C10 119.93 (11) C12—C13—C8 120.37 (11)
C8—C9—H9 120.0 C12—C13—H13 119.8
C10—C9—H9 120.0 C8—C13—H13 119.8
C1—N2—C7 105.87 (10) C13—C12—C11 121.94 (11)
C1—N2—C8 125.89 (11) C13—C12—H12 119.0
C7—N2—C8 128.14 (10) C11—C12—H12 119.0
C9—C10—C11 122.16 (11) N1—C2—C3 129.57 (11)
C9—C10—H10 118.9 N1—C2—C7 110.69 (10)
C11—C10—H10 118.9 C3—C2—C7 119.70 (11)
C1—N1—C2 104.25 (10) C4—C3—C2 118.10 (12)
C12—C11—C10 116.39 (11) C4—C3—H3 120.9
C12—C11—C11i 121.83 (13) C2—C3—H3 120.9
C10—C11—C11i 121.78 (13) C9—C8—C13 119.18 (11)
C6—C7—N2 132.38 (11) C9—C8—N2 121.11 (10)
C6—C7—C2 122.66 (11) C13—C8—N2 119.70 (11)
N2—C7—C2 104.86 (10) C5—C6—C7 116.40 (11)
C6—C5—C4 122.10 (12) C5—C6—H6 121.8
C6—C5—H5 118.9 C7—C6—H6 121.8
C4—C5—H5 118.9 N1—C1—N2 114.33 (12)
C3—C4—C5 121.03 (11) N1—C1—H1 122.8
C3—C4—H4 119.5 N2—C1—H1 122.8
C5—C4—H4 119.5
C8—C9—C10—C11 −0.30 (18) C5—C4—C3—C2 0.17 (17)
C9—C10—C11—C12 −1.33 (17) N1—C2—C3—C4 −177.73 (11)
C9—C10—C11—C11i 178.27 (12) C7—C2—C3—C4 −0.38 (16)
C1—N2—C7—C6 −177.15 (12) C10—C9—C8—C13 1.41 (16)
C8—N2—C7—C6 −0.74 (18) C10—C9—C8—N2 −179.55 (10)
C1—N2—C7—C2 −0.74 (11) C12—C13—C8—C9 −0.85 (17)
C8—N2—C7—C2 175.68 (10) C12—C13—C8—N2 −179.90 (10)
C6—C5—C4—C3 0.30 (18) C1—N2—C8—C9 −138.05 (12)
C8—C13—C12—C11 −0.85 (18) C7—N2—C8—C9 46.20 (15)
C10—C11—C12—C13 1.90 (17) C1—N2—C8—C13 40.98 (16)
C11i—C11—C12—C13 −177.70 (12) C7—N2—C8—C13 −134.76 (12)
C1—N1—C2—C3 176.54 (12) C4—C5—C6—C7 −0.53 (17)
C1—N1—C2—C7 −1.00 (12) N2—C7—C6—C5 176.21 (11)
C6—C7—C2—N1 177.95 (10) C2—C7—C6—C5 0.32 (16)
N2—C7—C2—N1 1.09 (12) C2—N1—C1—N2 0.52 (13)
C6—C7—C2—C3 0.13 (17) C7—N2—C1—N1 0.14 (13)
N2—C7—C2—C3 −176.73 (10) C8—N2—C1—N1 −176.38 (9)

Symmetry codes: (i) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···N1ii 0.93 2.61 3.425 (2) 147

Symmetry codes: (ii) x, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2046).

References

  1. Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bu, X. H., Li, L., Hu, T. L., Li, J. R., Wang, D. Z. & Zeng, Y. F. (2007). CrystEngComm, 9, 412–420.
  3. Buchwald, S. L., Klapars, A., Antilla, J. C. & Huang, X. H. (2001). J. Am. Chem. Soc.123, 7727–7729. [DOI] [PubMed]
  4. Cristau, H. J., Cellier, P. P., Spindler, J. F. & Taillefer, M. (2004). Chem. Eur. J.10, 5607–5622. [DOI] [PubMed]
  5. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  6. Su, C. Y., Cai, Y. P., Chen, C. L., Smith, M. D., Kaim, W. & zur Loye, H. C. (2003). J. Am. Chem. Soc.125, 8595–8613. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807063350/gg2046sup1.cif

e-64-0o141-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063350/gg2046Isup2.hkl

e-64-0o141-Isup2.hkl (81.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES