Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o142. doi: 10.1107/S1600536807063374

1-(2-Nitro­phen­yl)-3-phenyl­thio­urea

Yongqi Qin a, Fangfang Jian a,*, Mingna Jiang a, Xiangyan Yang a
PMCID: PMC2915211  PMID: 21200707

Abstract

The title compound, C13H11N3O2S, was prepared by reaction of 2-nitro­benzenamine, KOH and 1-isothio­cyanato­benzene in an ethanol solution at room temperature. The dihedral angles formed between the thiourea plane and the phenyl rings are 61.9 and 31.0°. The dihedral angle between the two phenyl rings is 78.1°. In the crystal structure, there are weak inter­molecular N—H⋯S and C—H⋯S hydrogen-bonding inter­actions.

Related literature

For related literature, see: Reinbold & Morar (1984); Xue et al. (2004); Madan & Taneja (1991).graphic file with name e-64-0o142-scheme1.jpg

Experimental

Crystal data

  • C13H11N3O2S

  • M r = 273.31

  • Monoclinic, Inline graphic

  • a = 7.3110 (15) Å

  • b = 24.113 (5) Å

  • c = 7.4320 (15) Å

  • β = 90.22 (3)°

  • V = 1310.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 (2) K

  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2964 measured reflections

  • 2764 independent reflections

  • 2022 reflections with I > 2σ(I)

  • R int = 0.017

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.132

  • S = 1.09

  • 2764 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807063374/at2515sup1.cif

e-64-0o142-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063374/at2515Isup2.hkl

e-64-0o142-Isup2.hkl (135.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.86 2.56 3.3744 (19) 158
C3—H3A⋯S1ii 0.93 2.84 3.725 (3) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2005B04).

supplementary crystallographic information

Comment

Thioureas have been studied for many years because of their broad antibiosis and sterilization properties Recent years study shows that thioureas not only can be used to kill insects and adjust plant growth but also have anti-viral activities (Madan et al., 1991; Reinbold et al.,1984). From our early quantum study on these compounds, we find that they have several active centers and can form polyligand complexes with metals easily (Xue et al., 2004).These complexes are widely used as anticancer medicines Therefore study on thioureas has important impact on the future. In order to search for new compounds with higher bioactivity, the title compound was synthesized and we herein report its crystal structure.

In the title compound, bond lengths and angles are generally normal. The C7—S1 bond length of 1.686 (2)Å is indicative of considerable double-bond character. The dihedral angle between the plane (C6—C8/N1/N2/S1) and the plane (C8—C13/N2) is 31.01°. The torsion angles of S1—C7—N2—C8 and N1—C7—N2—C8 are -1.31 and -179.19°, respectively.

In the crystal structure, there are weak intermolecular C—H···S and N—H···S hydrogen bonding interactions. These interactions stabilize the title structure.

Experimental

The title compound was prepared by reaction of 2-nitrobenzenamine (0.05 mol), KOH (0.15 mol) and 1-isothiocyanatobenzene (0.05 mol) in the ethanol solution (40 ml) at room temperature. Single crystals of the title compound suitable for X-ray measurements was obtained by recrystallization from ethanol/acetone (v/v=1:1) at room temperature.

Refinement

The H atoms were fixed geometrically and were treated as riding on the parent C atoms, with C—H = 0.93 Å and N—H = 0.86 Å, and Uiso=1.2 times Ueq of the parent atoms.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C13H11N3O2S F000 = 568
Mr = 273.31 Dx = 1.386 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 7.3110 (15) Å θ = 1.7–27.0º
b = 24.113 (5) Å µ = 0.25 mm1
c = 7.4320 (15) Å T = 293 (2) K
β = 90.22 (3)º Block, yellow
V = 1310.2 (5) Å3 0.25 × 0.20 × 0.18 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.017
Radiation source: fine-focus sealed tube θmax = 27.0º
Monochromator: graphite θmin = 1.7º
T = 293(2) K h = 0→8
ω scans k = 0→28
Absorption correction: none l = −8→8
2964 measured reflections 3 standard reflections
2764 independent reflections every 100 reflections
2022 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045   w = 1/[σ2(Fo2) + (0.0588P)2 + 0.4395P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.132 (Δ/σ)max < 0.001
S = 1.09 Δρmax = 0.31 e Å3
2764 reflections Δρmin = −0.41 e Å3
173 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.115 (6)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.20879 (9) 0.56603 (3) 0.96789 (9) 0.0669 (3)
O1 −0.0828 (3) 0.79863 (8) 1.3139 (4) 0.1026 (8)
O2 −0.1250 (3) 0.71304 (8) 1.3693 (3) 0.0785 (6)
N1 −0.0460 (3) 0.55266 (7) 1.2122 (3) 0.0556 (5)
H1A −0.0549 0.5206 1.1619 0.067*
N2 0.0901 (2) 0.63776 (7) 1.2248 (2) 0.0482 (4)
H2A 0.0145 0.6425 1.3119 0.058*
N3 −0.0333 (3) 0.75057 (8) 1.3045 (3) 0.0577 (5)
C1 −0.1032 (4) 0.57222 (10) 1.5305 (3) 0.0622 (6)
H1B 0.0220 0.5731 1.5528 0.075*
C2 −0.2268 (5) 0.58020 (11) 1.6701 (4) 0.0767 (8)
H2B −0.1840 0.5866 1.7863 0.092*
C3 −0.4120 (5) 0.57870 (12) 1.6372 (5) 0.0844 (10)
H3A −0.4939 0.5848 1.7305 0.101*
C4 −0.4759 (4) 0.56819 (12) 1.4666 (5) 0.0853 (10)
H4A −0.6013 0.5663 1.4458 0.102*
C5 −0.3554 (3) 0.56029 (10) 1.3246 (4) 0.0635 (6)
H5A −0.3990 0.5533 1.2091 0.076*
C6 −0.1685 (3) 0.56302 (8) 1.3585 (3) 0.0477 (5)
C7 0.0815 (3) 0.58703 (9) 1.1440 (3) 0.0462 (5)
C8 0.2032 (3) 0.68340 (8) 1.1878 (2) 0.0423 (5)
C9 0.3819 (3) 0.67718 (9) 1.1219 (3) 0.0509 (5)
H9A 0.4277 0.6417 1.1030 0.061*
C10 0.4912 (3) 0.72225 (11) 1.0846 (3) 0.0601 (6)
H10A 0.6086 0.7167 1.0403 0.072*
C11 0.4284 (4) 0.77548 (10) 1.1125 (3) 0.0649 (7)
H11A 0.5015 0.8057 1.0836 0.078*
C12 0.2561 (4) 0.78358 (9) 1.1834 (3) 0.0599 (6)
H12A 0.2143 0.8193 1.2058 0.072*
C13 0.1449 (3) 0.73817 (8) 1.2216 (3) 0.0465 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0690 (4) 0.0677 (4) 0.0644 (4) −0.0224 (3) 0.0339 (3) −0.0228 (3)
O1 0.0986 (16) 0.0629 (12) 0.147 (2) 0.0267 (11) 0.0178 (14) −0.0059 (12)
O2 0.0682 (11) 0.0700 (12) 0.0977 (14) 0.0081 (9) 0.0318 (10) −0.0063 (10)
N1 0.0613 (12) 0.0468 (10) 0.0589 (11) −0.0139 (8) 0.0251 (9) −0.0121 (8)
N2 0.0478 (10) 0.0446 (9) 0.0523 (10) −0.0057 (7) 0.0190 (8) −0.0050 (7)
N3 0.0621 (12) 0.0547 (11) 0.0562 (11) 0.0099 (10) −0.0038 (9) −0.0074 (9)
C1 0.0589 (14) 0.0683 (15) 0.0595 (15) −0.0087 (11) 0.0147 (11) −0.0049 (11)
C2 0.104 (2) 0.0671 (16) 0.0595 (15) −0.0087 (15) 0.0338 (15) −0.0044 (12)
C3 0.092 (2) 0.0666 (17) 0.095 (2) 0.0051 (15) 0.0597 (19) 0.0042 (15)
C4 0.0514 (15) 0.0791 (19) 0.126 (3) 0.0074 (13) 0.0338 (16) 0.0107 (18)
C5 0.0527 (14) 0.0594 (14) 0.0787 (17) 0.0021 (11) 0.0120 (12) 0.0061 (12)
C6 0.0504 (12) 0.0376 (10) 0.0552 (12) −0.0051 (8) 0.0195 (9) 0.0013 (8)
C7 0.0441 (11) 0.0480 (11) 0.0466 (11) −0.0048 (9) 0.0117 (8) −0.0016 (9)
C8 0.0460 (11) 0.0449 (10) 0.0362 (10) −0.0060 (8) 0.0024 (8) 0.0019 (8)
C9 0.0464 (11) 0.0558 (12) 0.0505 (12) −0.0058 (9) 0.0070 (9) −0.0018 (9)
C10 0.0529 (13) 0.0753 (17) 0.0522 (13) −0.0214 (11) 0.0042 (10) −0.0002 (11)
C11 0.0758 (17) 0.0615 (15) 0.0575 (14) −0.0303 (13) −0.0017 (12) 0.0054 (11)
C12 0.0816 (17) 0.0441 (11) 0.0540 (13) −0.0103 (11) −0.0096 (12) 0.0012 (9)
C13 0.0517 (12) 0.0484 (11) 0.0394 (10) −0.0013 (9) −0.0041 (9) −0.0005 (8)

Geometric parameters (Å, °)

S1—C7 1.686 (2) C3—H3A 0.9300
O1—N3 1.216 (3) C4—C5 1.391 (4)
O2—N3 1.226 (3) C4—H4A 0.9300
N1—C7 1.348 (3) C5—C6 1.390 (3)
N1—C6 1.433 (3) C5—H5A 0.9300
N1—H1A 0.8600 C8—C9 1.405 (3)
N2—C7 1.364 (3) C8—C13 1.411 (3)
N2—C8 1.404 (2) C9—C10 1.378 (3)
N2—H2A 0.8600 C9—H9A 0.9300
N3—C13 1.474 (3) C10—C11 1.379 (4)
C1—C6 1.381 (4) C10—H10A 0.9300
C1—C2 1.392 (3) C11—C12 1.381 (4)
C1—H1B 0.9300 C11—H11A 0.9300
C2—C3 1.375 (5) C12—C13 1.394 (3)
C2—H2B 0.9300 C12—H12A 0.9300
C3—C4 1.373 (5)
C7—N1—C6 127.83 (17) C1—C6—C5 120.8 (2)
C7—N1—H1A 116.1 C1—C6—N1 121.0 (2)
C6—N1—H1A 116.1 C5—C6—N1 118.1 (2)
C7—N2—C8 129.97 (16) N1—C7—N2 114.60 (17)
C7—N2—H2A 115.0 N1—C7—S1 119.45 (16)
C8—N2—H2A 115.0 N2—C7—S1 125.92 (15)
O1—N3—O2 121.2 (2) N2—C8—C9 122.26 (18)
O1—N3—C13 118.8 (2) N2—C8—C13 121.35 (18)
O2—N3—C13 120.00 (18) C9—C8—C13 116.35 (18)
C6—C1—C2 119.3 (3) C10—C9—C8 121.8 (2)
C6—C1—H1B 120.4 C10—C9—H9A 119.1
C2—C1—H1B 120.4 C8—C9—H9A 119.1
C3—C2—C1 120.3 (3) C9—C10—C11 120.7 (2)
C3—C2—H2B 119.8 C9—C10—H10A 119.7
C1—C2—H2B 119.8 C11—C10—H10A 119.7
C4—C3—C2 120.0 (2) C10—C11—C12 119.6 (2)
C4—C3—H3A 120.0 C10—C11—H11A 120.2
C2—C3—H3A 120.0 C12—C11—H11A 120.2
C3—C4—C5 120.8 (3) C11—C12—C13 120.0 (2)
C3—C4—H4A 119.6 C11—C12—H12A 120.0
C5—C4—H4A 119.6 C13—C12—H12A 120.0
C6—C5—C4 118.8 (3) C12—C13—C8 121.5 (2)
C6—C5—H5A 120.6 C12—C13—N3 116.3 (2)
C4—C5—H5A 120.6 C8—C13—N3 122.17 (18)
C6—C1—C2—C3 0.3 (4) N2—C8—C9—C10 179.4 (2)
C1—C2—C3—C4 1.3 (4) C13—C8—C9—C10 −2.8 (3)
C2—C3—C4—C5 −1.6 (4) C8—C9—C10—C11 0.5 (3)
C3—C4—C5—C6 0.2 (4) C9—C10—C11—C12 1.9 (4)
C2—C1—C6—C5 −1.6 (3) C10—C11—C12—C13 −1.9 (4)
C2—C1—C6—N1 −177.8 (2) C11—C12—C13—C8 −0.6 (3)
C4—C5—C6—C1 1.4 (3) C11—C12—C13—N3 177.4 (2)
C4—C5—C6—N1 177.6 (2) N2—C8—C13—C12 −179.37 (19)
C7—N1—C6—C1 −63.3 (3) C9—C8—C13—C12 2.9 (3)
C7—N1—C6—C5 120.4 (3) N2—C8—C13—N3 2.8 (3)
C6—N1—C7—N2 −1.0 (3) C9—C8—C13—N3 −174.95 (18)
C6—N1—C7—S1 −179.05 (19) O1—N3—C13—C12 9.1 (3)
C8—N2—C7—N1 −179.2 (2) O2—N3—C13—C12 −167.8 (2)
C8—N2—C7—S1 −1.3 (3) O1—N3—C13—C8 −172.9 (2)
C7—N2—C8—C9 −31.8 (3) O2—N3—C13—C8 10.2 (3)
C7—N2—C8—C13 150.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···S1i 0.86 2.56 3.3744 (19) 158
C3—H3A···S1ii 0.93 2.84 3.725 (3) 159

Symmetry codes: (i) −x, −y+1, −z+2; (ii) x−1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2515).

References

  1. Enraf–Nonius (1989). CAD-4 Software Version 5.0. Enraf–Nonius, Delft, The Netherlands.
  2. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  3. Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  4. Madan, V. K. & Taneja, A. D. (1991). J. Indian Chem. Soc.68, 162–163.
  5. Reinbold, A. M. & Morar, G. V. (1984). Ser. Biol. Khim. Nauk.4, 75–77.
  6. Sheldrick, G. M. (1990). SHELXTL/PC Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  7. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  8. Xue, S. J., Duan, L. P. & Xe, S. Y. (2004). Chin. J. Struct. Chem.23, 441–444.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807063374/at2515sup1.cif

e-64-0o142-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063374/at2515Isup2.hkl

e-64-0o142-Isup2.hkl (135.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES