Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o143. doi: 10.1107/S1600536807063039

1,1′-(4-Oxoheptane-1,7-di­yl)bis­(2-methyl-1H-benzimidazole) penta­hydrate

Lai-Ping Zhang a, Ying-Ying Liu a,*, Zhi-Fang Jia a, Guo-Hua Wei a
PMCID: PMC2915212  PMID: 21200708

Abstract

The title compound, C23H26N4O·5H2O, has noncrystallographic twofold rotation symmetry in the solid state. It crystallizes with five solvent water mol­ecules in the asymmetric unit. Four of these water mol­ecules are connected with each other via hydrogen-bonding inter­actions to form two types of centrosymmetric hexa­meric (H2O)6 rings. Via edge sharing of the hexa­mers, the water clusters thus build infinite chains that stretch parallel to the a axis. The fifth water mol­ecule provides an additional connection between the two hexa­meric (H2O)6 units via hydrogen bonds to both rings. The water mol­ecules in the channels along the a axis are also bonded via O—H⋯N hydrogen bonds to the organic units, and face-to-face π–π inter­actions [with centroid-to-centroid distances of 3.656 (1) Å and average face-to-face distances of 3.431 (5) Å] between the aromatic rings of adjacent mol­ecules complete the inter­molecular inter­actions in this structure.

Related literature

Hay et al. (1998) report the use of benzimidazole complexes to model the active site of a variety of metalloenzymes, such as carbonic anhydrase and carboxy­peptidase.graphic file with name e-64-0o143-scheme1.jpg

Experimental

Crystal data

  • C23H26N4O·5H2O

  • M r = 464.56

  • Monoclinic, Inline graphic

  • a = 8.814 (5) Å

  • b = 25.664 (13) Å

  • c = 11.635 (6) Å

  • β = 109.06 (1)°

  • V = 2488 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.40 × 0.30 × 0.25 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.970, T max = 0.982

  • 12521 measured reflections

  • 4424 independent reflections

  • 2623 reflections with I > 2σ(I)

  • R int = 0.109

Refinement

  • R[F 2 > 2σ(F 2)] = 0.079

  • wR(F 2) = 0.222

  • S = 1.01

  • 4424 reflections

  • 311 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807063039/zl2082sup1.cif

e-64-0o143-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063039/zl2082Isup2.hkl

e-64-0o143-Isup2.hkl (211.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯N4 0.93 (2) 1.95 (4) 2.758 (6) 144 (5)
O1W—H1B⋯O3Wi 0.92 (4) 2.31 (5) 2.954 (5) 127 (5)
O2W—H2B⋯O4W 0.90 (5) 2.61 (6) 3.308 (7) 135 (7)
O2W—H2B⋯O5Wii 0.90 (5) 2.05 (7) 2.770 (6) 136 (8)
O3W—H3B⋯O1iii 0.88 (5) 2.18 (5) 3.054 (6) 171 (7)
O4W—H4B⋯O1Wi 0.92 (8) 2.00 (7) 2.900 (7) 166 (8)
O4W—H4A⋯O5Wii 0.92 (7) 2.33 (4) 3.200 (7) 157 (7)
O5W—H5B⋯N1iv 0.90 (5) 1.93 (5) 2.822 (5) 175 (6)
O5W—H5A⋯O3Wv 0.90 (6) 1.92 (6) 2.811 (6) 167 (6)
O3W—H3A⋯O2Wi 0.91 (2) 1.94 (2) 2.840 (7) 170 (6)
O2W—H2A⋯O1Wi 0.90 (2) 2.14 (5) 2.823 (6) 132 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

We thank the Science Foundation for Young Teachers of Northeast Normal University (No. 20070314) for support.

supplementary crystallographic information

Comment

Currently there is considerable interest in the use of benzimidazole complexes to model the active site of a variety of metalloenzymes such as carbonic anhydrase and carboxypeptidase (Hay et al., 1998). In this context we prepared (Fig 4) and analyzed the title benzimidazole compound, and its structure is described here.

The title molecule (Fig 1) has non-crystallographic two fold symmetry with an r.m.s. deviation for both halves of 0.066 Å. It crystallizes with five lattice water molecules in the asymmetric part of the unit cell. Four of these water molecules (O1W, O2W, O3W and O5W) are connected with each other via hydrogen bonding interactions to form two types of centrosymmetric hexameric (H2O)6 rings. Via edge sharing of the hexamers the water clusters thus build infinite chains that stretch parallel to the a axis. The fifth water molecule O4W provides an additional connection between the two hexameric (H2O)6 rings via hydrogen bonds to both units. Water molecules O1W and O5W in the channels along a axis are also bonded via O—H···N hydrogen bonds to N4 and N1 of the organic unit, and all water molecules act both as donors and acceptors (Fig. 2).

Face-to-face π-π interactions between adjacent benzimidazoles made up by the atoms C1—C7, N3 and N4 and their symmetry equivalents at 1 - x, -y, 2 - z (with centroid-to-centriod distances of 3.656 (1) Å and an average face-to-face distance of 3.431 (5) Å, Fig. 3) complete the intermolecular interactions in this structure and lead to the formation of a 1-D supramolecuar chain along the a axis.

Experimental

To a solution of 1,7-dichloro-4-oxoheptane (8.3 g, 47 mmol) and ethylene glycol (2.9 g, 47 mmol) in cyclohexane (35 ml) was added 0.024 g sodium bisulfate. The reaction mixture was refluxed for 3 h with azeotropic removal of water via a Dean–Stark trap, until there was no more water created. The resulting clear solution was cooled down, washed with water twice, and then distilled. The fraction distilling between 447 K and 453 K was collected to obtain 1,11-dichloro-(5,8-dioxaspiro[4.2]undecane) as a clear liquid (5.5 g, 25 mmol, 53%).

A mixture of 2-methyl-benzimidazole (6.6 g, 50 mmol) and NaOH (2.0 g, 50 mmol) in DMSO (10 ml) was stirred at 333 K for 1 h, and then the collected distillate (5.5 g, 25 mmol) from the previous step was added. The mixture was cooled to room temperature after stirring at 333 K for 2 h, then poured into 200 ml of water and a white solid formed immediately. The compound (5,8-dioxaspiro[4.2]undecyl)bis(2-methyl-benzimidazole) was obtained in 74% yield (7.6 g, 19 mmol).

After washing with 50 ml water, the solid was transfered into 150 ml water with 10 ml HCl (12 mol l-1). The mixture was refluxed for 3.5 h, and then filtered. The obtained residue was dissolved in 100 ml me thanol, and colorless single crystals of the title compound were obtained after several days at room temperature (3.7 g, 10 mmol, 55%).

Refinement

The methyl H atoms were refined as members of rigid groups with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(parent atom), and were allowed to rotate around the C—C bonds. Other H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(parent atom). Water H atoms were located in a difference Fourier map and refined as riding atoms, with an O—H distance of 0.89 (2) Å, and with Uiso(H) = 1.5Ueq(O). An anti-bumping restraint (standard deviation 0.01 Å) was used to avoid chemically not meaningful close contacts between the hydrogen atoms of the water molecules.

Figures

Fig. 1.

Fig. 1.

View of the structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The water filled channels along the a axis. Hydrogen bonds are represented by dashed lines.

Fig. 3.

Fig. 3.

The π-π interactions in the structure of the title compound. H atoms have been omitted for clarity. Symmetry codes: (i) 1 - x, -y, 2 - z.

Fig. 4.

Fig. 4.

The synthesis of the title compound as described in the experimental section.

Crystal data

C23H26N4O·5H2O F000 = 1000
Mr = 464.56 Dx = 1.240 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4407 reflections
a = 8.814 (5) Å θ = 1.6–25.3º
b = 25.664 (13) Å µ = 0.09 mm1
c = 11.635 (6) Å T = 293 (2) K
β = 109.06 (1)º Block, colorless
V = 2488 (2) Å3 0.40 × 0.30 × 0.25 mm
Z = 4

Data collection

Bruker APEX CCD area-detector diffractometer 4424 independent reflections
Radiation source: fine-focus sealed tube 2623 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.109
T = 293(2) K θmax = 25.3º
ω scans θmin = 1.6º
Absorption correction: empirical (using intensity measurements)(SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.970, Tmax = 0.982 k = −24→30
12521 measured reflections l = −13→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.222   w = 1/[σ2(Fo2) + (0.0646P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
4424 reflections Δρmax = 0.33 e Å3
311 parameters Δρmin = −0.27 e Å3
15 restraints Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.011 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7657 (6) 0.03465 (19) 0.9184 (5) 0.0691 (15)
H1 0.8154 0.0179 0.8693 0.083*
C2 0.6000 (5) 0.03845 (18) 0.8828 (4) 0.0554 (13)
C3 0.5296 (5) 0.06379 (18) 0.9592 (4) 0.0551 (13)
C4 0.6183 (6) 0.08559 (19) 1.0686 (5) 0.0670 (14)
H4 0.5697 0.1026 1.1180 0.080*
C5 0.7824 (7) 0.0810 (2) 1.1012 (5) 0.0804 (17)
H5 0.8467 0.0950 1.1747 0.096*
C6 0.8542 (6) 0.0558 (2) 1.0266 (6) 0.0785 (17)
H6 0.9655 0.0534 1.0513 0.094*
C7 0.3447 (6) 0.0363 (2) 0.7922 (4) 0.0603 (13)
C8 0.1824 (2) 0.02679 (8) 0.70124 (17) 0.0900 (19)
H8A 0.1014 0.0396 0.7326 0.135*
H8B 0.1675 −0.0099 0.6858 0.135*
H8C 0.1742 0.0446 0.6269 0.135*
C9 −0.8388 (2) 0.22467 (8) 0.63617 (17) 0.0538 (13)
C10 −0.9846 (2) 0.24529 (8) 0.63617 (17) 0.0691 (15)
H10 −1.0804 0.2309 0.5863 0.083*
C11 −0.9873 (2) 0.28737 (8) 0.71070 (17) 0.0743 (16)
H11 −1.0849 0.3012 0.7107 0.089*
C12 −0.8442 (2) 0.30882 (8) 0.78523 (17) 0.0753 (16)
H12 −0.8460 0.3370 0.8351 0.090*
C13 −0.6984 (2) 0.28820 (8) 0.78522 (17) 0.0648 (14)
H13 −0.6027 0.3026 0.8351 0.078*
C14 −0.6957 (2) 0.24613 (8) 0.71069 (17) 0.0497 (12)
C15 −0.6463 (6) 0.18141 (19) 0.6109 (4) 0.0615 (14)
C16 −0.5526 (6) 0.1420 (2) 0.5672 (5) 0.0935 (19)
H16A −0.6243 0.1222 0.5018 0.140*
H16B −0.4981 0.1190 0.6327 0.140*
H16C −0.4752 0.1595 0.5389 0.140*
C17 −0.4031 (5) 0.22546 (18) 0.7553 (4) 0.0645 (15)
H17A −0.3820 0.2618 0.7778 0.077*
H17B −0.3447 0.2165 0.7005 0.077*
C18 −0.3436 (5) 0.19203 (18) 0.8684 (4) 0.0582 (13)
H18A −0.4014 0.2013 0.9234 0.070*
H18B −0.3664 0.1558 0.8459 0.070*
C19 −0.1661 (5) 0.19827 (19) 0.9332 (4) 0.0640 (14)
H19A −0.1407 0.2351 0.9376 0.077*
H19B −0.1423 0.1857 1.0158 0.077*
C20 −0.0576 (5) 0.17074 (18) 0.8769 (5) 0.0549 (13)
C21 0.1192 (5) 0.17729 (19) 0.9435 (4) 0.0640 (14)
H21A 0.1390 0.1687 1.0283 0.077*
H21B 0.1459 0.2138 0.9401 0.077*
C22 0.2331 (5) 0.14550 (19) 0.8985 (4) 0.0629 (14)
H22A 0.1977 0.1470 0.8104 0.075*
H22B 0.3391 0.1611 0.9286 0.075*
C23 0.2449 (5) 0.08920 (19) 0.9373 (4) 0.0656 (14)
H23A 0.2737 0.0873 1.0251 0.079*
H23B 0.1413 0.0725 0.9021 0.079*
N1 −0.8030 (5) 0.18326 (15) 0.5730 (3) 0.0632 (11)
N2 −0.5748 (4) 0.21841 (15) 0.6929 (3) 0.0551 (11)
N3 0.3650 (4) 0.06156 (15) 0.8987 (4) 0.0570 (11)
N4 0.4803 (5) 0.02109 (15) 0.7805 (4) 0.0659 (12)
O1 −0.1070 (3) 0.14430 (13) 0.7855 (3) 0.0654 (10)
O1W 0.5198 (5) −0.06286 (16) 0.6451 (4) 0.1008 (14)
H1A 0.548 (7) −0.0316 (14) 0.687 (4) 0.151*
H1B 0.455 (7) −0.052 (2) 0.570 (3) 0.151*
O2W 0.2025 (6) 0.02126 (17) 0.3906 (5) 0.1258 (18)
H2A 0.308 (3) 0.028 (3) 0.425 (5) 0.189*
H2B 0.155 (7) 0.0522 (16) 0.366 (8) 0.189*
O3W 0.7904 (5) 0.08554 (17) 0.5440 (4) 0.0971 (13)
H3A 0.780 (8) 0.0512 (11) 0.559 (6) 0.146*
H3B 0.825 (8) 0.099 (3) 0.618 (3) 0.146*
O4W 0.2093 (7) 0.1308 (3) 0.2426 (5) 0.153 (2)
H4A 0.129 (7) 0.126 (4) 0.276 (8) 0.229*
H4B 0.289 (7) 0.109 (3) 0.289 (8) 0.229*
O5W 0.5163 (4) 0.39697 (15) 0.9246 (3) 0.0828 (12)
H5A 0.457 (6) 0.404 (3) 0.973 (5) 0.124*
H5B 0.576 (6) 0.3710 (17) 0.968 (5) 0.124*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.056 (3) 0.058 (4) 0.097 (4) 0.009 (3) 0.030 (3) 0.006 (3)
C2 0.054 (3) 0.047 (3) 0.069 (3) 0.003 (2) 0.025 (3) 0.004 (3)
C3 0.050 (3) 0.053 (3) 0.058 (3) 0.005 (2) 0.012 (3) 0.010 (3)
C4 0.067 (3) 0.058 (4) 0.071 (4) 0.008 (3) 0.015 (3) −0.003 (3)
C5 0.066 (4) 0.078 (4) 0.082 (4) −0.001 (3) 0.003 (3) −0.004 (3)
C6 0.048 (3) 0.082 (4) 0.097 (5) −0.002 (3) 0.010 (3) 0.004 (4)
C7 0.053 (3) 0.067 (4) 0.059 (3) 0.004 (3) 0.015 (3) 0.003 (3)
C8 0.063 (3) 0.108 (5) 0.086 (4) 0.009 (3) 0.005 (3) −0.006 (3)
C9 0.050 (3) 0.050 (3) 0.055 (3) −0.003 (2) 0.008 (2) −0.001 (3)
C10 0.045 (3) 0.084 (4) 0.071 (3) 0.004 (3) 0.008 (3) 0.012 (3)
C11 0.065 (3) 0.076 (4) 0.084 (4) 0.022 (3) 0.026 (3) 0.007 (3)
C12 0.082 (4) 0.062 (4) 0.086 (4) 0.015 (3) 0.032 (3) 0.002 (3)
C13 0.064 (3) 0.057 (4) 0.070 (3) −0.003 (3) 0.017 (3) 0.005 (3)
C14 0.050 (3) 0.042 (3) 0.056 (3) 0.006 (2) 0.015 (2) 0.000 (2)
C15 0.064 (3) 0.052 (4) 0.067 (3) 0.009 (3) 0.019 (3) −0.004 (3)
C16 0.085 (4) 0.096 (5) 0.100 (4) 0.011 (3) 0.030 (3) −0.026 (4)
C17 0.047 (3) 0.051 (3) 0.088 (4) −0.001 (2) 0.013 (3) 0.002 (3)
C18 0.042 (3) 0.062 (3) 0.068 (3) 0.004 (2) 0.015 (2) −0.003 (3)
C19 0.047 (3) 0.066 (4) 0.074 (3) 0.012 (2) 0.015 (3) −0.008 (3)
C20 0.059 (3) 0.043 (3) 0.059 (3) 0.002 (2) 0.014 (3) 0.005 (3)
C21 0.044 (3) 0.062 (3) 0.078 (3) 0.006 (2) 0.010 (3) 0.000 (3)
C22 0.048 (3) 0.064 (4) 0.078 (4) 0.010 (2) 0.023 (3) 0.012 (3)
C23 0.052 (3) 0.067 (4) 0.080 (3) 0.015 (3) 0.023 (3) 0.015 (3)
N1 0.054 (2) 0.062 (3) 0.065 (3) 0.000 (2) 0.008 (2) −0.012 (2)
N2 0.044 (2) 0.055 (3) 0.063 (3) 0.0036 (19) 0.012 (2) −0.001 (2)
N3 0.046 (2) 0.063 (3) 0.061 (3) 0.0081 (19) 0.016 (2) 0.002 (2)
N4 0.059 (3) 0.065 (3) 0.070 (3) 0.001 (2) 0.017 (2) −0.008 (2)
O1 0.057 (2) 0.070 (3) 0.066 (2) 0.0025 (17) 0.0161 (17) −0.0130 (19)
O1W 0.073 (3) 0.117 (3) 0.113 (3) 0.002 (2) 0.031 (2) −0.033 (3)
O2W 0.099 (3) 0.099 (4) 0.187 (5) −0.008 (3) 0.057 (4) −0.019 (3)
O3W 0.080 (3) 0.098 (3) 0.106 (3) 0.000 (3) 0.020 (2) −0.023 (3)
O4W 0.135 (5) 0.180 (6) 0.129 (4) −0.010 (4) 0.023 (4) 0.042 (4)
O5W 0.079 (3) 0.077 (3) 0.080 (3) 0.004 (2) 0.009 (2) 0.008 (2)

Geometric parameters (Å, °)

C1—C6 1.359 (7) C16—H16B 0.9600
C1—C2 1.385 (6) C16—H16C 0.9600
C1—H1 0.9300 C17—N2 1.460 (5)
C2—N4 1.382 (6) C17—C18 1.513 (6)
C2—C3 1.400 (6) C17—H17A 0.9700
C3—C4 1.376 (6) C17—H17B 0.9700
C3—N3 1.392 (5) C18—C19 1.507 (5)
C4—C5 1.376 (6) C18—H18A 0.9700
C4—H4 0.9300 C18—H18B 0.9700
C5—C6 1.388 (7) C19—C20 1.501 (6)
C5—H5 0.9300 C19—H19A 0.9700
C6—H6 0.9300 C19—H19B 0.9700
C7—N4 1.306 (6) C20—O1 1.216 (5)
C7—N3 1.358 (6) C20—C21 1.506 (6)
C7—C8 1.496 (5) C21—C22 1.513 (6)
C8—H8A 0.9600 C21—H21A 0.9700
C8—H8B 0.9600 C21—H21B 0.9700
C8—H8C 0.9600 C22—C23 1.507 (6)
C9—N1 1.386 (4) C22—H22A 0.9700
C9—C10 1.390 (3) C22—H22B 0.9700
C9—C14 1.390 (3) C23—N3 1.461 (5)
C10—C11 1.390 (3) C23—H23A 0.9700
C10—H10 0.9300 C23—H23B 0.9700
C11—C12 1.390 (3) O1W—H1A 0.93 (2)
C11—H11 0.9300 O1W—H1B 0.92 (4)
C12—C13 1.390 (3) O2W—H2A 0.90 (2)
C12—H12 0.9300 O2W—H2B 0.90 (5)
C13—C14 1.390 (3) O3W—H3A 0.91 (2)
C13—H13 0.9300 O3W—H3B 0.88 (5)
C14—N2 1.352 (4) O4W—H4A 0.92 (7)
C15—N1 1.307 (6) O4W—H4B 0.92 (8)
C15—N2 1.348 (6) O5W—H5A 0.90 (6)
C15—C16 1.496 (7) O5W—H5B 0.90 (5)
C16—H16A 0.9600
C6—C1—C2 118.6 (5) H16B—C16—H16C 109.5
C6—C1—H1 120.7 N2—C17—C18 111.8 (4)
C2—C1—H1 120.7 N2—C17—H17A 109.3
N4—C2—C1 132.0 (5) C18—C17—H17A 109.3
N4—C2—C3 109.0 (4) N2—C17—H17B 109.3
C1—C2—C3 119.0 (5) C18—C17—H17B 109.3
C4—C3—N3 131.9 (5) H17A—C17—H17B 107.9
C4—C3—C2 122.7 (4) C19—C18—C17 112.6 (4)
N3—C3—C2 105.4 (4) C19—C18—H18A 109.1
C3—C4—C5 116.6 (5) C17—C18—H18A 109.1
C3—C4—H4 121.7 C19—C18—H18B 109.1
C5—C4—H4 121.7 C17—C18—H18B 109.1
C4—C5—C6 121.4 (5) H18A—C18—H18B 107.8
C4—C5—H5 119.3 C20—C19—C18 115.9 (4)
C6—C5—H5 119.3 C20—C19—H19A 108.3
C1—C6—C5 121.6 (5) C18—C19—H19A 108.3
C1—C6—H6 119.2 C20—C19—H19B 108.3
C5—C6—H6 119.2 C18—C19—H19B 108.3
N4—C7—N3 112.7 (4) H19A—C19—H19B 107.4
N4—C7—C8 125.0 (4) O1—C20—C19 123.2 (4)
N3—C7—C8 122.3 (4) O1—C20—C21 121.8 (4)
C7—C8—H8A 109.5 C19—C20—C21 115.0 (4)
C7—C8—H8B 109.5 C20—C21—C22 117.0 (4)
H8A—C8—H8B 109.5 C20—C21—H21A 108.1
C7—C8—H8C 109.5 C22—C21—H21A 108.1
H8A—C8—H8C 109.5 C20—C21—H21B 108.1
H8B—C8—H8C 109.5 C22—C21—H21B 108.1
N1—C9—C10 131.51 (17) H21A—C21—H21B 107.3
N1—C9—C14 108.49 (18) C23—C22—C21 113.7 (4)
C10—C9—C14 119.99 (18) C23—C22—H22A 108.8
C11—C10—C9 120.00 (18) C21—C22—H22A 108.8
C11—C10—H10 120.0 C23—C22—H22B 108.8
C9—C10—H10 120.0 C21—C22—H22B 108.8
C12—C11—C10 120.00 (18) H22A—C22—H22B 107.7
C12—C11—H11 120.0 N3—C23—C22 111.1 (4)
C10—C11—H11 120.0 N3—C23—H23A 109.4
C13—C12—C11 119.99 (18) C22—C23—H23A 109.4
C13—C12—H12 120.0 N3—C23—H23B 109.4
C11—C12—H12 120.0 C22—C23—H23B 109.4
C14—C13—C12 120.00 (18) H23A—C23—H23B 108.0
C14—C13—H13 120.0 C15—N1—C9 104.4 (3)
C12—C13—H13 120.0 C15—N2—C14 105.6 (3)
N2—C14—C13 132.77 (18) C15—N2—C17 127.5 (4)
N2—C14—C9 107.23 (18) C14—N2—C17 126.8 (4)
C13—C14—C9 120.01 (18) C7—N3—C3 106.6 (4)
N1—C15—N2 114.3 (4) C7—N3—C23 128.3 (4)
N1—C15—C16 123.4 (5) C3—N3—C23 124.4 (4)
N2—C15—C16 122.3 (5) C7—N4—C2 106.3 (4)
C15—C16—H16A 109.5 H1A—O1W—H1B 102 (3)
C15—C16—H16B 109.5 H2A—O2W—H2B 106 (4)
H16A—C16—H16B 109.5 H3A—O3W—H3B 103 (7)
C15—C16—H16C 109.5 H4A—O4W—H4B 102 (7)
H16A—C16—H16C 109.5 H5A—O5W—H5B 99 (6)
C6—C1—C2—N4 −179.8 (5) C21—C22—C23—N3 −175.9 (4)
C6—C1—C2—C3 −0.1 (7) N2—C15—N1—C9 −0.7 (5)
N4—C2—C3—C4 −179.8 (4) C16—C15—N1—C9 179.7 (4)
C1—C2—C3—C4 0.5 (7) C10—C9—N1—C15 −178.9 (2)
N4—C2—C3—N3 −0.7 (5) C14—C9—N1—C15 0.2 (4)
C1—C2—C3—N3 179.5 (4) N1—C15—N2—C14 0.8 (5)
N3—C3—C4—C5 −179.4 (5) C16—C15—N2—C14 −179.6 (4)
C2—C3—C4—C5 −0.6 (7) N1—C15—N2—C17 177.5 (4)
C3—C4—C5—C6 0.4 (8) C16—C15—N2—C17 −2.9 (8)
C2—C1—C6—C5 −0.1 (8) C13—C14—N2—C15 178.8 (2)
C4—C5—C6—C1 −0.1 (9) C9—C14—N2—C15 −0.6 (3)
N1—C9—C10—C11 179.1 (2) C13—C14—N2—C17 2.1 (5)
C14—C9—C10—C11 0.0 C9—C14—N2—C17 −177.3 (3)
C9—C10—C11—C12 0.0 C18—C17—N2—C15 −85.2 (6)
C10—C11—C12—C13 0.0 C18—C17—N2—C14 90.8 (5)
C11—C12—C13—C14 0.0 N4—C7—N3—C3 1.7 (5)
C12—C13—C14—N2 −179.4 (2) C8—C7—N3—C3 −179.4 (4)
C12—C13—C14—C9 0.0 N4—C7—N3—C23 172.2 (4)
N1—C9—C14—N2 0.3 (2) C8—C7—N3—C23 −8.9 (7)
C10—C9—C14—N2 179.52 (18) C4—C3—N3—C7 178.4 (5)
N1—C9—C14—C13 −179.26 (19) C2—C3—N3—C7 −0.5 (5)
C10—C9—C14—C13 0.0 C4—C3—N3—C23 7.4 (8)
N2—C17—C18—C19 179.3 (4) C2—C3—N3—C23 −171.5 (4)
C17—C18—C19—C20 −76.8 (5) C22—C23—N3—C7 −88.9 (6)
C18—C19—C20—O1 −0.8 (7) C22—C23—N3—C3 80.1 (5)
C18—C19—C20—C21 −179.7 (4) N3—C7—N4—C2 −2.1 (5)
O1—C20—C21—C22 −5.5 (7) C8—C7—N4—C2 179.0 (4)
C19—C20—C21—C22 173.4 (4) C1—C2—N4—C7 −178.6 (5)
C20—C21—C22—C23 −77.5 (5) C3—C2—N4—C7 1.7 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1A···N4 0.93 (2) 1.95 (4) 2.758 (6) 144 (5)
O1W—H1B···O3Wi 0.92 (4) 2.31 (5) 2.954 (5) 127 (5)
O2W—H2B···O4W 0.90 (5) 2.61 (6) 3.308 (7) 135 (7)
O2W—H2B···O5Wii 0.90 (5) 2.05 (7) 2.770 (6) 136 (8)
O3W—H3B···O1iii 0.88 (5) 2.18 (5) 3.054 (6) 171 (7)
O4W—H4B···O1Wi 0.92 (8) 2.00 (7) 2.900 (7) 166 (8)
O4W—H4A···O5Wii 0.92 (7) 2.33 (4) 3.200 (7) 157 (7)
O5W—H5B···N1iv 0.90 (5) 1.93 (5) 2.822 (5) 175 (6)
O5W—H5A···O3Wv 0.90 (6) 1.92 (6) 2.811 (6) 167 (6)
O3W—H3A···O2Wi 0.91 (2) 1.94 (2) 2.840 (7) 170 (6)
O2W—H2A···O1Wi 0.90 (2) 2.14 (5) 2.823 (6) 132 (5)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1/2, −y+1/2, z−1/2; (iii) x+1, y, z; (iv) x+3/2, −y+1/2, z+1/2; (v) x−1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2082).

References

  1. Bruker (1997). SMART Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (1999). SAINT Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hay, R. W., Clifford, T. & Lightfoot, P. (1998). Polyhedron, 17, 3575–3581.
  4. Sheldrick, G. M. (1990). SHELXTL-Plus Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807063039/zl2082sup1.cif

e-64-0o143-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063039/zl2082Isup2.hkl

e-64-0o143-Isup2.hkl (211.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES