Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o144. doi: 10.1107/S1600536807063453

Diethyl [hydr­oxy(2-nitro­phen­yl)­meth­yl]phospho­nate

Cai-bao Chen a,*, Wei-wei Jin a, Xin-yong Li a
PMCID: PMC2915213  PMID: 21200709

Abstract

In the title mol­ecule, C11H16NO6P, the nitro group is twisted out of the mean plane of the benzene ring at 29.91 (3)°. The two ethyl groups are disordered between two orientations in the ratios 0.784 (7)/0.216 (7) and 0.733 (6)/0.267 (6). Inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For general background, see: Allen et al. (1978); Hirschmann et al. (1994).graphic file with name e-64-0o144-scheme1.jpg

Experimental

Crystal data

  • C11H16NO6P

  • M r = 289.22

  • Triclinic, Inline graphic

  • a = 7.5659 (13) Å

  • b = 8.3844 (15) Å

  • c = 12.557 (2) Å

  • α = 73.356 (3)°

  • β = 87.391 (3)°

  • γ = 64.432 (3)°

  • V = 685.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 291 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: none

  • 6168 measured reflections

  • 2800 independent reflections

  • 2381 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.157

  • S = 1.05

  • 2800 reflections

  • 193 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807063453/cv2361sup1.cif

e-64-0o144-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063453/cv2361Isup2.hkl

e-64-0o144-Isup2.hkl (137.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O4i 0.82 (1) 1.857 (11) 2.671 (3) 174 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank Dr Xiang-Gao Meng for the X-ray data collection.

supplementary crystallographic information

Comment

Phosphonates, especially enantiomerically pure forms, are particularly important in connection with their remarkable biological activities. They have been used as enzyme inhibitors, antibacterial agents, anti-HIV agents, botryticides, and haptens for catalytic antibodies (Allen et al., 1978; Hirschmann et al., 1994). In this regard, the preparation of various optically active phosphonates with a diversity of structures is highly desirable for drug discovery and medicinal chemistry. The title compound (I) was obtained in the reaction of diphenylphosphite with an aromatic aldehyde in the presence of triethylamine.

In (I) (Fig. 1), the nitro group is twisted out of the mean plane of benzene ring at 29.91 (3)°. In the crystal (Fig. 2), intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2).

Experimental

To a solution of 2-nitrobenzylaldehyde(1 mmol) in tetrahydrofuran(0.6 ml) was added diphenyl phosphite(1 mmol) at 0°C. After 15 minutes, triethylamine (0.1 ml) was added, and the reaction mixture was stirred for 2 h at 0°C. The resulting solution was washed with saturated NaHCO3 solution, extracted with dichloromethane and dried over MgSO4. The solution was filtered and purified by column chroatography on silica gel, using ehtyl acetate and petroleum as eluant to afford the title compound. Crystals of (I) suitable for X-ray data collection were obtained by slow evaporation of a chloroform and methanol solution in ratio of 100:1 at 293 K.

Refinement

C-bound H atoms were initially located in difference maps and then constrained to their ideal positions (C–H = 0.93–0.98 Å), and refined as riding with Uiso(H)=1.2–1.5Ueq(C). The hydroxy atom H3A was located on difference map and refined with bond restraint O–H = 0.82 (1) Å, and with the Uiso(H) =1.5Ueq(O). Two ethyl groups were treated as disordered between two orientations with the refined occupancies of 0.786 (7)/0.214 (7) [C8—C9/C8'-C9'] and 0.727 (6)/0.273 (6) [C10—C11/C10'-C11'], respectively.

Figures

Fig. 1.

Fig. 1.

View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius. The minor parts of disordered ethyl groups are omitted.

Fig. 2.

Fig. 2.

A portion of crystal packing showing the hydrogen-bonded (dashed lines) dimers in (I). H atoms not invloved in hydrogen bonds have been omitted for clarity.

Crystal data

C11H16NO6P Z = 2
Mr = 289.22 F000 = 304
Triclinic, P1 Dx = 1.401 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 7.5659 (13) Å Cell parameters from 3014 reflections
b = 8.3844 (15) Å θ = 2.8–28.0º
c = 12.557 (2) Å µ = 0.22 mm1
α = 73.356 (3)º T = 291 (2) K
β = 87.391 (3)º Block, colourless
γ = 64.432 (3)º 0.30 × 0.20 × 0.20 mm
V = 685.6 (2) Å3

Data collection

Bruker SMART 4K CCD area-detector diffractometer 2381 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.020
Monochromator: graphite θmax = 26.5º
T = 291(2) K θmin = 1.7º
φ and ω scans h = −9→9
Absorption correction: none k = −10→10
6168 measured reflections l = −15→15
2800 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.157   w = 1/[σ2(Fo2) + (0.0955P)2 + 0.1438P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2800 reflections Δρmax = 0.38 e Å3
193 parameters Δρmin = −0.20 e Å3
1 restraint Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
P1 0.33556 (9) 0.33802 (9) 0.13960 (4) 0.0648 (2)
C1 0.6327 (3) 0.2053 (3) 0.31083 (16) 0.0521 (4)
C2 0.5564 (3) 0.2596 (3) 0.40485 (16) 0.0548 (5)
C3 0.6201 (4) 0.1419 (3) 0.51225 (18) 0.0691 (6)
H3 0.5640 0.1819 0.5728 0.083*
C4 0.7655 (4) −0.0332 (3) 0.5291 (2) 0.0760 (6)
H4 0.8103 −0.1125 0.6012 0.091*
C5 0.8460 (4) −0.0924 (3) 0.4386 (2) 0.0782 (7)
H5 0.9455 −0.2115 0.4495 0.094*
C6 0.7784 (3) 0.0256 (3) 0.3323 (2) 0.0676 (5)
H6 0.8328 −0.0171 0.2723 0.081*
N1 0.4048 (3) 0.4469 (3) 0.39566 (16) 0.0673 (5)
C7 0.5651 (3) 0.3239 (3) 0.19053 (16) 0.0574 (5)
H7 0.5481 0.4491 0.1839 0.069*
C8 0.0059 (6) 0.5738 (7) 0.1961 (3) 0.0961 (13) 0.784 (7)
H8A −0.0469 0.6001 0.1208 0.115* 0.784 (7)
H8B 0.0354 0.6744 0.1987 0.115* 0.784 (7)
C9 −0.1387 (9) 0.5585 (11) 0.2750 (7) 0.1132 (17) 0.784 (7)
H9A −0.1731 0.4637 0.2688 0.170* 0.784 (7)
H9B −0.2543 0.6746 0.2584 0.170* 0.784 (7)
H9C −0.0833 0.5271 0.3496 0.170* 0.784 (7)
C10 0.2216 (8) 0.0840 (9) 0.1406 (5) 0.1275 (19) 0.733 (6)
H10A 0.1865 0.0309 0.2129 0.153* 0.733 (6)
H10B 0.1072 0.1975 0.1039 0.153* 0.733 (6)
C11 0.2598 (15) −0.0343 (12) 0.0801 (5) 0.133 (2) 0.733 (6)
H11A 0.2744 0.0237 0.0046 0.199* 0.733 (6)
H11B 0.1531 −0.0677 0.0811 0.199* 0.733 (6)
H11C 0.3792 −0.1436 0.1115 0.199* 0.733 (6)
C8' −0.024 (2) 0.471 (3) 0.2069 (13) 0.0961 (13) 0.216 (7)
H8C −0.0615 0.5126 0.1274 0.115* 0.216 (7)
H8D −0.0636 0.3735 0.2412 0.115* 0.216 (7)
C9' −0.112 (4) 0.604 (4) 0.247 (3) 0.1132 (17) 0.216 (7)
H9D −0.1637 0.5624 0.3148 0.170* 0.216 (7)
H9E −0.2174 0.7016 0.1941 0.170* 0.216 (7)
H9F −0.0209 0.6482 0.2619 0.170* 0.216 (7)
C10' 0.340 (2) 0.050 (2) 0.0838 (15) 0.1275 (19) 0.267 (6)
H10C 0.2555 0.1460 0.0194 0.153* 0.267 (6)
H10D 0.4623 −0.0245 0.0579 0.153* 0.267 (6)
C11' 0.254 (5) −0.055 (4) 0.1332 (16) 0.133 (2) 0.267 (6)
H11D 0.3195 −0.1279 0.2064 0.199* 0.267 (6)
H11E 0.2613 −0.1348 0.0901 0.199* 0.267 (6)
H11F 0.1188 0.0221 0.1394 0.199* 0.267 (6)
O1 0.2928 (3) 0.4664 (3) 0.46827 (17) 0.0988 (6)
O2 0.3979 (3) 0.5760 (2) 0.31795 (16) 0.0925 (6)
O3 0.7091 (3) 0.2488 (3) 0.12000 (14) 0.0823 (5)
H3A 0.711 (6) 0.338 (3) 0.072 (2) 0.123*
O4 0.2695 (3) 0.4578 (3) 0.02454 (13) 0.0976 (7)
O5 0.1853 (2) 0.3993 (2) 0.22587 (12) 0.0713 (4)
O6 0.3792 (3) 0.1322 (3) 0.15899 (16) 0.0909 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0644 (4) 0.0939 (5) 0.0463 (3) −0.0471 (3) 0.0061 (2) −0.0157 (3)
C1 0.0521 (10) 0.0583 (10) 0.0551 (10) −0.0320 (8) 0.0044 (8) −0.0172 (8)
C2 0.0544 (11) 0.0607 (11) 0.0555 (10) −0.0299 (9) 0.0010 (8) −0.0181 (8)
C3 0.0756 (15) 0.0867 (15) 0.0526 (11) −0.0434 (13) −0.0008 (10) −0.0178 (10)
C4 0.0763 (15) 0.0768 (14) 0.0667 (14) −0.0378 (13) −0.0155 (11) 0.0005 (11)
C5 0.0650 (14) 0.0618 (12) 0.0967 (18) −0.0248 (11) −0.0065 (13) −0.0101 (12)
C6 0.0627 (13) 0.0669 (12) 0.0765 (14) −0.0292 (10) 0.0083 (10) −0.0249 (11)
N1 0.0710 (12) 0.0710 (11) 0.0634 (11) −0.0281 (9) 0.0009 (9) −0.0288 (9)
C7 0.0570 (11) 0.0715 (12) 0.0523 (10) −0.0357 (10) 0.0109 (8) −0.0193 (9)
C8 0.069 (2) 0.089 (3) 0.091 (2) −0.0168 (18) 0.0057 (17) 0.001 (2)
C9 0.070 (3) 0.132 (5) 0.152 (5) −0.049 (2) 0.049 (3) −0.061 (4)
C10 0.105 (4) 0.176 (5) 0.175 (5) −0.095 (4) 0.042 (3) −0.107 (4)
C11 0.192 (5) 0.146 (4) 0.114 (5) −0.114 (4) −0.006 (6) −0.048 (5)
C8' 0.069 (2) 0.089 (3) 0.091 (2) −0.0168 (18) 0.0057 (17) 0.001 (2)
C9' 0.070 (3) 0.132 (5) 0.152 (5) −0.049 (2) 0.049 (3) −0.061 (4)
C10' 0.105 (4) 0.176 (5) 0.175 (5) −0.095 (4) 0.042 (3) −0.107 (4)
C11' 0.192 (5) 0.146 (4) 0.114 (5) −0.114 (4) −0.006 (6) −0.048 (5)
O1 0.0921 (14) 0.1054 (14) 0.0858 (12) −0.0239 (11) 0.0255 (11) −0.0433 (11)
O2 0.1164 (16) 0.0613 (9) 0.0886 (12) −0.0296 (10) 0.0086 (11) −0.0210 (9)
O3 0.0725 (11) 0.1066 (14) 0.0690 (10) −0.0401 (10) 0.0278 (8) −0.0296 (9)
O4 0.0928 (13) 0.1595 (19) 0.0495 (9) −0.0782 (13) 0.0003 (8) −0.0059 (10)
O5 0.0563 (9) 0.0873 (10) 0.0569 (8) −0.0282 (8) 0.0041 (7) −0.0067 (7)
O6 0.0959 (14) 0.1074 (14) 0.1021 (14) −0.0641 (12) 0.0083 (10) −0.0463 (11)

Geometric parameters (Å, °)

P1—O4 1.4653 (18) C9—H9B 0.9600
P1—O6 1.556 (2) C9—H9C 0.9600
P1—O5 1.5598 (16) C10—C11 1.345 (9)
P1—C7 1.822 (2) C10—O6 1.461 (5)
C1—C6 1.386 (3) C10—H10A 0.9700
C1—C2 1.398 (3) C10—H10B 0.9700
C1—C7 1.518 (3) C11—H11A 0.9600
C2—C3 1.383 (3) C11—H11B 0.9600
C2—N1 1.466 (3) C11—H11C 0.9600
C3—C4 1.364 (4) C8'—C9' 1.26 (3)
C3—H3 0.9300 C8'—O5 1.435 (15)
C4—C5 1.381 (4) C8'—H8C 0.9700
C4—H4 0.9300 C8'—H8D 0.9700
C5—C6 1.375 (3) C9'—H9D 0.9600
C5—H5 0.9300 C9'—H9E 0.9600
C6—H6 0.9300 C9'—H9F 0.9600
N1—O1 1.213 (3) C10'—C11' 1.31 (3)
N1—O2 1.215 (3) C10'—O6 1.426 (13)
C7—O3 1.417 (2) C10'—H10C 0.9700
C7—H7 0.9800 C10'—H10D 0.9700
C8—O5 1.463 (4) C11'—H11D 0.9600
C8—C9 1.465 (7) C11'—H11E 0.9600
C8—H8A 0.9700 C11'—H11F 0.9600
C8—H8B 0.9700 O3—H3A 0.817 (10)
C9—H9A 0.9600
O4—P1—O6 115.38 (12) H8A—C8—H8B 108.3
O4—P1—O5 114.16 (11) C11—C10—O6 116.7 (6)
O6—P1—O5 103.70 (10) C11—C10—H10A 108.1
O4—P1—C7 112.67 (10) O6—C10—H10A 108.1
O6—P1—C7 103.71 (10) C11—C10—H10B 108.1
O5—P1—C7 106.13 (9) O6—C10—H10B 108.1
C6—C1—C2 115.53 (19) H10A—C10—H10B 107.3
C6—C1—C7 118.91 (18) C9'—C8'—O5 111 (2)
C2—C1—C7 125.53 (17) C9'—C8'—H8C 109.4
C3—C2—C1 122.48 (19) O5—C8'—H8C 109.4
C3—C2—N1 115.65 (18) C9'—C8'—H8D 109.4
C1—C2—N1 121.86 (17) O5—C8'—H8D 109.4
C4—C3—C2 119.8 (2) H8C—C8'—H8D 108.0
C4—C3—H3 120.1 C8'—C9'—H9D 109.5
C2—C3—H3 120.1 C8'—C9'—H9E 109.5
C3—C4—C5 119.7 (2) H9D—C9'—H9E 109.5
C3—C4—H4 120.2 C8'—C9'—H9F 109.5
C5—C4—H4 120.2 H9D—C9'—H9F 109.5
C6—C5—C4 119.7 (2) H9E—C9'—H9F 109.5
C6—C5—H5 120.1 C11'—C10'—O6 110.4 (15)
C4—C5—H5 120.1 C11'—C10'—H10C 109.6
C5—C6—C1 122.8 (2) O6—C10'—H10C 109.6
C5—C6—H6 118.6 C11'—C10'—H10D 109.6
C1—C6—H6 118.6 O6—C10'—H10D 109.6
O1—N1—O2 122.7 (2) H10C—C10'—H10D 108.1
O1—N1—C2 117.8 (2) C10'—C11'—H11D 109.5
O2—N1—C2 119.50 (19) C10'—C11'—H11E 109.5
O3—C7—C1 109.76 (17) H11D—C11'—H11E 109.5
O3—C7—P1 106.87 (14) C10'—C11'—H11F 109.5
C1—C7—P1 113.49 (13) H11D—C11'—H11F 109.5
O3—C7—H7 108.9 H11E—C11'—H11F 109.5
C1—C7—H7 108.9 C7—O3—H3A 106 (3)
P1—C7—H7 108.9 C8'—O5—P1 125.3 (7)
O5—C8—C9 109.0 (4) C8—O5—P1 122.36 (19)
O5—C8—H8A 109.9 C10'—O6—C10 45.2 (6)
C9—C8—H8A 109.9 C10'—O6—P1 128.7 (8)
O5—C8—H8B 109.9 C10—O6—P1 120.3 (3)
C9—C8—H8B 109.9
C6—C1—C2—C3 −0.6 (3) O6—P1—C7—C1 −56.38 (16)
C7—C1—C2—C3 177.55 (19) O5—P1—C7—C1 52.54 (17)
C6—C1—C2—N1 178.54 (19) C9'—C8'—O5—C8 −39.6 (17)
C7—C1—C2—N1 −3.3 (3) C9'—C8'—O5—P1 −139.1 (16)
C1—C2—C3—C4 1.3 (3) C9—C8—O5—C8' 49.1 (11)
N1—C2—C3—C4 −177.8 (2) C9—C8—O5—P1 156.6 (4)
C2—C3—C4—C5 −0.9 (4) O4—P1—O5—C8' 39.3 (10)
C3—C4—C5—C6 −0.2 (4) O6—P1—O5—C8' −87.1 (10)
C4—C5—C6—C1 1.0 (4) C7—P1—O5—C8' 164.0 (10)
C2—C1—C6—C5 −0.6 (3) O4—P1—O5—C8 −7.3 (3)
C7—C1—C6—C5 −178.8 (2) O6—P1—O5—C8 −133.7 (3)
C3—C2—N1—O1 −29.3 (3) C7—P1—O5—C8 117.4 (3)
C1—C2—N1—O1 151.6 (2) C11'—C10'—O6—C10 −35.3 (18)
C3—C2—N1—O2 149.4 (2) C11'—C10'—O6—P1 −131.9 (19)
C1—C2—N1—O2 −29.8 (3) C11—C10—O6—C10' 16.3 (12)
C6—C1—C7—O3 −19.2 (2) C11—C10—O6—P1 132.5 (6)
C2—C1—C7—O3 162.69 (18) O4—P1—O6—C10' −8.9 (8)
C6—C1—C7—P1 100.3 (2) O5—P1—O6—C10' 116.7 (8)
C2—C1—C7—P1 −77.8 (2) C7—P1—O6—C10' −132.6 (8)
O4—P1—C7—O3 −60.70 (19) O4—P1—O6—C10 −63.6 (3)
O6—P1—C7—O3 64.75 (16) O5—P1—O6—C10 62.0 (3)
O5—P1—C7—O3 173.68 (13) C7—P1—O6—C10 172.7 (3)
O4—P1—C7—C1 178.17 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3A···O4i 0.82 (1) 1.857 (11) 2.671 (3) 174 (4)

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2361).

References

  1. Allen, J. G., Atherton, F. R., Hall, M. J., Hassall, C. H., Holmes, S. W., Lambert, R. W., Nisbet, L. J. & Ringrose, P. S. (1978). Nature (London), 272, 56–58. [DOI] [PubMed]
  2. Bruker (2001). SMART (Version 5.628) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hirschmann, R., Smith, A. B., Taylor, C. M., Benkovic, P. A., Taylor, S., Yager, K. M., Sprengler, P. A. & Benkovic, S. J. (1994). Science, 265, 234–237. [DOI] [PubMed]
  4. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  5. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807063453/cv2361sup1.cif

e-64-0o144-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063453/cv2361Isup2.hkl

e-64-0o144-Isup2.hkl (137.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES