Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o151. doi: 10.1107/S1600536807063489

3-Phenyl-1-(pyrrol-2-yl)prop-2-en-1-one

Zhen-Qi Gong a,*, Gou-Sheng Liu a, Hong-Ying Xia a
PMCID: PMC2915219  PMID: 21200716

Abstract

The title mol­ecule, C13H11NO, is almost flat, the angle between the pyrrole and the phenyl rings being 10.9 (1)°. The atoms of the central C3O unit are coplanar, with a mean deviation from the plane of 0.001 (1) Å. The angles between this plane and the pyrrole and phenyl rings are 3.3 (1) and 8.0 (1)°, respectively. The mol­ecules form centrosymmetric dimers through a pair of N—H⋯O hydrogen bonds with an R 2 2(10) motif.

Related literature

For details of the biological and the pharmaceutical properties of chalcones, see: Chen et al. (1999); Dimmock et al. (1999); Go et al. (2005); Lin et al. (2002); Lunardi et al. (2003); Opletalova (2000). For other related literature, see: Gong & Shen (2007); Kumaran et al. (1996); Shanmuga Sundara Raj et al. (1997, 1998). For a description of hydrogen-bond motifs, see: Etter et al. (1990).graphic file with name e-64-0o151-scheme1.jpg

Experimental

Crystal data

  • C13H11NO

  • M r = 197.23

  • Monoclinic, Inline graphic

  • a = 19.848 (4) Å

  • b = 5.6435 (12) Å

  • c = 19.325 (4) Å

  • β = 101.535 (4)°

  • V = 2120.9 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.34 × 0.13 × 0.11 mm

Data collection

  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.974, T max = 0.991

  • 5274 measured reflections

  • 2069 independent reflections

  • 1164 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.137

  • S = 1.00

  • 2069 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807063489/fb2072sup1.cif

e-64-0o151-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063489/fb2072Isup2.hkl

e-64-0o151-Isup2.hkl (101.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.02 2.817 (2) 155
C7—H7⋯O1 0.93 2.51 2.835 (3) 101

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Jiangxi Science and Technology Normal University for the support of this study.

supplementary crystallographic information

Comment

Chalcone derivatives possess wide variety of pharmaceutical properties, such as anticancer, antibacterial, antiviral, antiprotozoal, insecticidal and enzyme-inhibitory ones (Dimmock et al., 1999; Go et al., 2005; Opletalova, 2000). Some of the substituted chalcones are also reported to possess antileishmanial (Chen et al., 1999), antitubercular (Lin et al., 2002), trypanocidal (Lunardi et al., 2003) activities. As a part of our ongoing efforts in the chalcone compounds (Gong & Shen, 2007), the title compound is reported here for the first time.

In the title compound, C13H11NO, the bond lengths and angles are usual. The –NH groups are involved as donors to form centrosymmetric dimers with a motif R22(10) through N—H···O hydrogen bonds (Etter et al., 1990) - (Fig. 2). There is a pyrrole-H···π-phenyl-ring interaction as indicate the geometric parameters C2—H2···Centroid(phenyl) (1 - x, y, 3/2 - z) where the distance H···centroid and C2···centroid equal to 2.90 and 3.666 (3) Å, respectively, and the angle C2—H2···Centroid(phenyl) equals to 141° (Spek, 2003).

Experimental

2-Acetylpyrrole (2.18 g, 20.0 mmol) was added to a solution of benzaldehyde (1.06 g, 10.0 mmol) in methanol (65 ml). Then potassium hydroxide (1.12 g, 20 mmol) and ammonia (25%, 50 ml) were added to the solution and refluxed for 12 h. The resulting solution was cooled and the solvent was evaporated under vacuum to give an orange precipitate which was separated by filtration, washed with iced ethanol (95%) and water to pH = 7. Recrystallization from dichloromethane gave light yellow prism-like crystals with average size of about 1.50x0.35x0.25 mm. Yield: 0.89 g (45%).

Refinement

All the H atoms could be distinguished in the difference Fourier map. Nevertheless, the H atoms were set into idealized positions and constrained by the riding motion formalism: The C—H and N—H distances were set to 0.93 and 0.86 Å, respectively, while Uiso=1.2Ueq of the pertinent carrier atom.

Figures

Fig. 1.

Fig. 1.

The title molecule with the displacement ellipsoids shown at the 30% probability level, and with the H atoms shown as spheres of arbitrary radii.

Fig. 2.

Fig. 2.

A motif showing the N—H···.O hydrogen bonds. The H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C13H11NO F000 = 832
Mr = 197.23 Dx = 1.235 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 642 reflections
a = 19.848 (4) Å θ = 2.7–24.7º
b = 5.6435 (12) Å µ = 0.08 mm1
c = 19.325 (4) Å T = 293 (2) K
β = 101.535 (4)º Prism, light yellow
V = 2120.9 (8) Å3 0.34 × 0.13 × 0.11 mm
Z = 8

Data collection

Bruker APEX area-detector diffractometer 2069 independent reflections
Radiation source: fine-focus sealed tube 1164 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.040
T = 293(2) K θmax = 26.0º
φ and ω scans θmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −24→23
Tmin = 0.974, Tmax = 0.991 k = −6→6
5274 measured reflections l = −14→23

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 H-atom parameters constrained
wR(F2) = 0.137   w = 1/[σ2(Fo2) + (0.0534P)2 + 0.0616P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
2069 reflections Δρmax = 0.13 e Å3
136 parameters Δρmin = −0.13 e Å3
44 constraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.54821 (8) 0.1673 (3) 0.58099 (8) 0.0776 (5)
N1 0.41400 (9) 0.2050 (3) 0.50060 (9) 0.0635 (5)
H1 0.4349 0.0847 0.4874 0.076*
C1 0.44232 (11) 0.3625 (4) 0.55205 (10) 0.0547 (6)
C2 0.39177 (12) 0.5253 (4) 0.55675 (12) 0.0673 (7)
H2 0.3961 0.6536 0.5875 0.081*
C3 0.33346 (12) 0.4656 (4) 0.50787 (13) 0.0762 (7)
H3 0.2916 0.5456 0.4997 0.091*
C4 0.34890 (12) 0.2665 (4) 0.47383 (12) 0.0724 (7)
H4 0.3191 0.1871 0.4380 0.087*
C5 0.51165 (12) 0.3362 (4) 0.59096 (11) 0.0586 (6)
C6 0.53729 (12) 0.5178 (4) 0.64459 (11) 0.0640 (6)
H6 0.5083 0.6427 0.6503 0.077*
C7 0.59949 (12) 0.5118 (4) 0.68497 (11) 0.0609 (6)
H7 0.6274 0.3860 0.6775 0.073*
C8 0.62940 (11) 0.6813 (4) 0.74025 (10) 0.0564 (6)
C9 0.69227 (11) 0.6324 (4) 0.78395 (11) 0.0645 (6)
H9 0.7159 0.4953 0.7767 0.077*
C10 0.72018 (13) 0.7842 (5) 0.83802 (13) 0.0733 (7)
H10 0.7622 0.7486 0.8671 0.088*
C11 0.68593 (15) 0.9879 (5) 0.84886 (13) 0.0780 (8)
H11 0.7046 1.0898 0.8855 0.094*
C12 0.62420 (14) 1.0411 (4) 0.80554 (13) 0.0782 (7)
H12 0.6011 1.1794 0.8128 0.094*
C13 0.59620 (13) 0.8898 (4) 0.75115 (12) 0.0699 (7)
H13 0.5547 0.9283 0.7216 0.084*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0839 (12) 0.0726 (11) 0.0687 (11) 0.0236 (9) −0.0030 (8) −0.0209 (8)
N1 0.0670 (12) 0.0654 (12) 0.0563 (11) 0.0096 (10) 0.0076 (9) −0.0115 (10)
C1 0.0643 (14) 0.0543 (14) 0.0453 (12) 0.0030 (11) 0.0102 (11) −0.0051 (11)
C2 0.0730 (15) 0.0639 (16) 0.0651 (15) 0.0084 (13) 0.0138 (13) −0.0107 (12)
C3 0.0672 (15) 0.0833 (18) 0.0767 (17) 0.0166 (14) 0.0114 (14) −0.0072 (14)
C4 0.0619 (15) 0.0858 (18) 0.0661 (15) 0.0029 (14) 0.0051 (12) −0.0102 (14)
C5 0.0749 (16) 0.0527 (14) 0.0486 (13) 0.0075 (12) 0.0134 (11) −0.0024 (11)
C6 0.0732 (15) 0.0575 (15) 0.0609 (14) 0.0051 (12) 0.0123 (12) −0.0109 (11)
C7 0.0684 (14) 0.0583 (15) 0.0579 (14) 0.0009 (12) 0.0174 (12) −0.0049 (11)
C8 0.0646 (14) 0.0539 (14) 0.0521 (13) −0.0081 (12) 0.0154 (11) −0.0037 (11)
C9 0.0660 (15) 0.0655 (15) 0.0631 (15) −0.0076 (12) 0.0157 (12) −0.0018 (12)
C10 0.0717 (16) 0.0802 (18) 0.0669 (16) −0.0221 (15) 0.0110 (12) −0.0012 (14)
C11 0.104 (2) 0.0711 (19) 0.0591 (15) −0.0342 (16) 0.0157 (15) −0.0060 (13)
C12 0.108 (2) 0.0550 (15) 0.0728 (18) −0.0107 (15) 0.0210 (16) −0.0106 (13)
C13 0.0828 (16) 0.0579 (14) 0.0672 (16) −0.0021 (13) 0.0105 (13) −0.0049 (12)

Geometric parameters (Å, °)

O1—C5 1.236 (2) C7—C8 1.468 (3)
N1—C4 1.338 (3) C7—H7 0.9300
N1—C1 1.368 (2) C8—C13 1.385 (3)
N1—H1 0.8600 C8—C9 1.387 (3)
C1—C2 1.377 (3) C9—C10 1.379 (3)
C1—C5 1.438 (3) C9—H9 0.9300
C2—C3 1.381 (3) C10—C11 1.373 (3)
C2—H2 0.9300 C10—H10 0.9300
C3—C4 1.367 (3) C11—C12 1.372 (3)
C3—H3 0.9300 C11—H11 0.9300
C4—H4 0.9300 C12—C13 1.382 (3)
C5—C6 1.474 (3) C12—H12 0.9300
C6—C7 1.322 (3) C13—H13 0.9300
C6—H6 0.9300
C4—N1—C1 109.70 (18) C6—C7—C8 127.4 (2)
C4—N1—H1 125.2 C6—C7—H7 116.3
C1—N1—H1 125.2 C8—C7—H7 116.3
N1—C1—C2 106.42 (18) C13—C8—C9 118.3 (2)
N1—C1—C5 121.59 (19) C13—C8—C7 121.9 (2)
C2—C1—C5 132.0 (2) C9—C8—C7 119.8 (2)
C1—C2—C3 108.3 (2) C10—C9—C8 120.9 (2)
C1—C2—H2 125.8 C10—C9—H9 119.5
C3—C2—H2 125.8 C8—C9—H9 119.5
C4—C3—C2 107.0 (2) C11—C10—C9 120.0 (2)
C4—C3—H3 126.5 C11—C10—H10 120.0
C2—C3—H3 126.5 C9—C10—H10 120.0
N1—C4—C3 108.6 (2) C12—C11—C10 119.9 (2)
N1—C4—H4 125.7 C12—C11—H11 120.0
C3—C4—H4 125.7 C10—C11—H11 120.0
O1—C5—C1 121.92 (19) C11—C12—C13 120.2 (3)
O1—C5—C6 121.0 (2) C11—C12—H12 119.9
C1—C5—C6 117.1 (2) C13—C12—H12 119.9
C7—C6—C5 123.2 (2) C12—C13—C8 120.6 (2)
C7—C6—H6 118.4 C12—C13—H13 119.7
C5—C6—H6 118.4 C8—C13—H13 119.7
C4—N1—C1—C2 0.4 (2) C1—C5—C6—C7 178.6 (2)
C4—N1—C1—C5 178.7 (2) C5—C6—C7—C8 −179.1 (2)
N1—C1—C2—C3 −0.3 (3) C6—C7—C8—C13 −7.4 (3)
C5—C1—C2—C3 −178.3 (2) C6—C7—C8—C9 171.7 (2)
C1—C2—C3—C4 0.1 (3) C13—C8—C9—C10 1.6 (3)
C1—N1—C4—C3 −0.3 (3) C7—C8—C9—C10 −177.45 (19)
C2—C3—C4—N1 0.2 (3) C8—C9—C10—C11 −0.5 (3)
N1—C1—C5—O1 −1.8 (3) C9—C10—C11—C12 −0.5 (4)
C2—C1—C5—O1 175.9 (2) C10—C11—C12—C13 0.2 (4)
N1—C1—C5—C6 179.22 (18) C11—C12—C13—C8 1.0 (4)
C2—C1—C5—C6 −3.0 (4) C9—C8—C13—C12 −1.9 (3)
O1—C5—C6—C7 −0.4 (3) C7—C8—C13—C12 177.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.02 2.817 (2) 155
C7—H7···O1 0.93 2.51 2.835 (3) 101

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2072).

References

  1. Bruker (2002). SAINT (Version 6.36A), SMART (Version 5.626) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chen, M., Zhai, L., Christensen, S. B., Theander, T. G. & Kharazami, A. (1999). Antimicrob. Agents Chemother.43, 793–801.
  3. Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. (1999). Curr. Med. Chem.6, 1125–1149. [PubMed]
  4. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  5. Go, M. L., Wu, X. & Liu, X.-L. (2005). Curr. Med. Chem.12, 481–499. [DOI] [PubMed]
  6. Gong, Z.-Q. & Shen, Y.-L. (2007). Acta Cryst. E63, o3939.
  7. Kumaran, D., Eswaramoorthy, S., Ponnuswamy, M. N., Raju, K. S. & Nanjundan, S. (1996). Acta Cryst. C52, 2543–2545.
  8. Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem.16, 2795–2802. [DOI] [PubMed]
  9. Lunardi, F., Guzhela, M., Rodrigues, A. T., Correa, R., Calixtio, J. B. & Santos, A. R. S. (2003). Antimicrob. Agents Chemother.47, 1449–1456. [DOI] [PMC free article] [PubMed]
  10. Opletalova, V. (2000). Ceska Slov. Farm.49, 278–284. [PubMed]
  11. Shanmuga Sundara Raj, S., Ponnuswamy, M. N., Shanmugam, G. & Nanjundan, S. (1997). Acta Cryst. C53, 917–918.
  12. Shanmuga Sundara Raj, S., Ponnuswamy, M. N., Shanmugam, G. & Nanjundan, S. (1998). Acta Cryst. C54, 541–542.
  13. Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
  14. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  15. Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany.
  16. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807063489/fb2072sup1.cif

e-64-0o151-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063489/fb2072Isup2.hkl

e-64-0o151-Isup2.hkl (101.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES