Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o175–o176. doi: 10.1107/S1600536807063210

N 2,N 2′-Bis(2,2-dimethyl­propano­yl)benzene-1,3-dicarbohydrazide

Hoong-Kun Fun a,*, Suchada Chantrapromma b,, Subrata Jana c, Anita Hazra c, Shyamaprosad Goswami c
PMCID: PMC2915239  PMID: 21200739

Abstract

In the mol­ecular structure of the title hydrazide derivative, C18H26N4O4, the conformations of the two units of 2-(2,2-dimethyl-1-oxoprop­yl)hydrazide substituents are not planar; these two units are attached axially to the benzene ring with C(ortho)—C—C(=O)—N torsion angles of 28.1 (2) and 31.0 (2)° [where C(ortho) is the C atom at position 4 of the benzene ring relative to the substituent at position 3 or the C atom at position 6 of the benzene ring relative to the substituent at position 1, as appropriate]. The dihedral angles between the hydrazide units and the benzene ring are 62.66 (7) and 63.84 (7)°. In the crystal structure, mol­ecules are arranged in an anti-parallel manner and are linked by N—H⋯O inter­molecular hydrogen bonds and weak C—H⋯O inter­molecular inter­actions into a three-dimensional network. The structure is further stabilized by a weak C—H⋯N intra­molecular inter­action.

Related literature

For values of bond lengths, see: Allen et al. (1987). For related literature on the applications and bioactivities of hydrazide derivatives, see for example: Feng et al. (2006); Fernández et al. (2004); Hołtra et al. (2007); Imramovský et al. (2007); Kim et al. (2007); Lemay et al. (2007); Liu et al. (2006); Nica et al. (2007); Raveendran & Pal (2007); Rivero & Buchwald (2007); Sicardi et al. (1980); Yang et al. (2007).graphic file with name e-64-0o175-scheme1.jpg

Experimental

Crystal data

  • C18H26N4O4

  • M r = 362.43

  • Monoclinic, Inline graphic

  • a = 7.1853 (2) Å

  • b = 14.8928 (4) Å

  • c = 17.1656 (5) Å

  • β = 96.050 (2)°

  • V = 1826.65 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100.0 (1) K

  • 0.56 × 0.10 × 0.08 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.949, T max = 0.993

  • 34290 measured reflections

  • 5301 independent reflections

  • 3858 reflections with I > 2σ(I)

  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.141

  • S = 1.06

  • 5301 reflections

  • 257 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807063210/is2255sup1.cif

e-64-0o175-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063210/is2255Isup2.hkl

e-64-0o175-Isup2.hkl (259.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O3i 0.90 (2) 2.12 (2) 3.0193 (16) 176.7 (16)
N2—H1N2⋯O4ii 0.845 (18) 1.993 (19) 2.8262 (17) 169 (2)
N3—H1N3⋯O1iii 0.876 (18) 1.969 (18) 2.8307 (16) 167.3 (16)
N4—H1N4⋯O2iv 0.878 (19) 2.059 (19) 2.9320 (16) 172.3 (19)
C1—H1A⋯O4ii 0.93 2.48 3.1879 (17) 133
C3—H3A⋯O1iii 0.93 2.56 3.2854 (17) 135
C12—H12C⋯O3i 0.96 2.52 3.433 (2) 159
C18—H18C⋯N4 0.96 2.61 2.9347 (19) 100

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

SJ, AH and SG acknowledge the DST [SR/S1/OC-13/2005] and CSIR [01(1913)/04/EMR-II], Government of India, for financial support. SJ and AH thank the CSIR, Government of India, for research fellowships. SC thanks Prince of Songkla University for support. The authors also thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118.

supplementary crystallographic information

Comment

Hydrazide derivatives of different compounds are very important units in host–guest chemistry due to their special arrangement of donor-acceptors (Feng et al., 2006; Yang et al., 2007). These types of compounds are also important for the metal coordinations and related studies (Hołtra et al., 2007; Nica et al., 2007; Raveendran & Pal, 2007). Hydrazide-based compounds are also involved in different synthetic applications (Fernández et al., 2004; Lemay et al., 2007; Kim et al., 2007; Rivero & Buchwald, 2007) as well as in medicinal activities (Imramovský et al., 2007; Liu et al., 2006; Sicardi et al., 1980). We synthesized the title compound for being a host of host–guest complexes syntheses. The single-crystal X-ray structural study of the title compound was undertaken in order to establish the three-dimensional structure and to gain more details of conformations of the various groups.

In the molecular structure of the title compound (Fig. 1), the conformations of the two units of 2-(2,2-dimethyl-1-oxopropyl)hydrazide substituents are not planar which can be indicated by the dihedral angles between the mean planes of C6/C7/O2/N2 and O1/N1/N2/C8/C9 = 87.77 (8)° and C4/C13/O3/N3 and O4/N3/N4/C14/C15 = 87.90 (8)°. These two units are axially attached to the benzene ring with the torsion angles C1–C6–C7–N2 = 28.1 (2)° and C3–C4–C13–N3 = 31.0 (2)°. The orientations of the two hydrazide moieties with respect to the benzene ring can be indicated by the dihedral angles between the mean planes of N1/N2/C8/C9 and N3/N4/C14/C15 and the benzene ring being 62.66 (7) and 63.84 (7)°, respectively. The torsion angles of N1–N2–C7–C6 = -165.58 (12)° and N4–N3–C13–C14 = -160.69 (12)° indicate that the two substituents are in (-)-anti-periplanar conformations. All bond lengths and angles are in normal values (Allen et al., 1987).

In the crystal packing in Fig. 2, the molecules are arranged in an anti-parallel manner and linked by N—H···O intermolecular hydrogen bonds and weak C—H···O intermolecular interactions (Table 1) into three dimensional networks. The crystal is further stabilized by a weak C—H···N intramolecular interaction.

Experimental

Initially isophthalic acid was converted to its methyl ester under refluxing condition with methanol and a catalytic amount of concentrated sulfuric acid. This ester was then refluxed with excess hydrazine hydrate and ethanol for three hours. After completion of the reaction, excess ethanol was evaporated out and the solid substance was washed well with water and dried under reduced pressure. The properly dried intermediate compound was treated with pivalic anhydride at 353 K for seven hours. The crude compound was extracted with chloroform after neutralizing the reaction mixture with aqueous sodium bicarbonate solution. The title compound was purified by column chromatography (Silica gel 100–200 mesh) using ethyl acetate as eluent to afford an off-white colored solid compound. Single crystals were grown by slow evaporation of CHCl3/MeOH solution (v/v 1:1) (m.p. over 523 K).

Refinement

Hydrazide H atoms were located in a difference map and isotropically refined. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic and 0.96 Å for CH3. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. Hydrogen bonds were shown as dash lines.

Crystal data

C18H26N4O4 F000 = 776
Mr = 362.43 Dx = 1.318 Mg m3
Monoclinic, P21/c Melting point: over 523 K
Hall symbol: -P 2ybc Mo Kα radiation λ = 0.71073 Å
a = 7.1853 (2) Å Cell parameters from 5301 reflections
b = 14.8928 (4) Å θ = 2.4–30.0º
c = 17.1656 (5) Å µ = 0.10 mm1
β = 96.050 (2)º T = 100.0 (1) K
V = 1826.65 (9) Å3 Needle, colorless
Z = 4 0.56 × 0.10 × 0.08 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5301 independent reflections
Radiation source: fine-focus sealed tube 3858 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.071
Detector resolution: 8.33 pixels mm-1 θmax = 30.0º
T = 100.0(1) K θmin = 2.4º
ω scans h = −10→10
Absorption correction: multi-scan(SADABS; Bruker, 2005) k = −20→20
Tmin = 0.949, Tmax = 0.993 l = −24→24
34290 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.141   w = 1/[σ2(Fo2) + (0.0619P)2 + 0.4134P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
5301 reflections Δρmax = 0.46 e Å3
257 parameters Δρmin = −0.28 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.60769 (16) 0.05613 (7) 0.25206 (6) 0.0237 (3)
O2 0.38220 (15) 0.21786 (7) 0.36444 (6) 0.0184 (2)
O3 0.11704 (15) 0.22624 (7) 0.62797 (6) 0.0187 (2)
O4 −0.10708 (16) 0.07187 (7) 0.73429 (6) 0.0240 (3)
N1 0.33903 (19) 0.13157 (8) 0.22251 (7) 0.0184 (3)
N2 0.27315 (19) 0.09916 (9) 0.29066 (7) 0.0184 (3)
N3 0.23552 (18) 0.11418 (8) 0.70784 (7) 0.0172 (3)
N4 0.15571 (19) 0.14796 (8) 0.77239 (7) 0.0173 (3)
C1 0.2816 (2) −0.00484 (9) 0.43413 (8) 0.0159 (3)
H1A 0.3021 −0.0379 0.3899 0.019*
C2 0.2495 (2) −0.04858 (9) 0.50312 (8) 0.0171 (3)
H2A 0.2474 −0.1110 0.5046 0.021*
C3 0.2207 (2) 0.00018 (9) 0.56966 (8) 0.0157 (3)
H3A 0.1998 −0.0295 0.6156 0.019*
C4 0.2231 (2) 0.09396 (9) 0.56759 (7) 0.0142 (3)
C5 0.25445 (19) 0.13769 (9) 0.49847 (7) 0.0150 (3)
H5A 0.2563 0.2001 0.4969 0.018*
C6 0.2831 (2) 0.08878 (9) 0.43155 (7) 0.0143 (3)
C7 0.3208 (2) 0.14076 (9) 0.36016 (8) 0.0152 (3)
C8 0.5108 (2) 0.10397 (9) 0.20601 (8) 0.0177 (3)
C9 0.5743 (2) 0.13472 (10) 0.12760 (9) 0.0219 (3)
C10 0.7443 (3) 0.07870 (14) 0.11231 (11) 0.0404 (5)
H10A 0.8442 0.0897 0.1529 0.061*
H10B 0.7840 0.0950 0.0625 0.061*
H10C 0.7118 0.0162 0.1119 0.061*
C11 0.6266 (3) 0.23490 (11) 0.13166 (10) 0.0281 (4)
H11A 0.7375 0.2430 0.1673 0.042*
H11B 0.5257 0.2687 0.1496 0.042*
H11C 0.6494 0.2555 0.0805 0.042*
C12 0.4177 (3) 0.11974 (11) 0.06080 (9) 0.0270 (4)
H12A 0.3870 0.0570 0.0573 0.040*
H12B 0.4593 0.1394 0.0123 0.040*
H12C 0.3090 0.1534 0.0711 0.040*
C13 0.1843 (2) 0.15065 (9) 0.63621 (8) 0.0151 (3)
C14 −0.0226 (2) 0.12316 (9) 0.78142 (8) 0.0166 (3)
C15 −0.1087 (2) 0.16126 (10) 0.85232 (8) 0.0185 (3)
C16 −0.2991 (3) 0.11803 (12) 0.85580 (10) 0.0298 (4)
H16A −0.2844 0.0542 0.8613 0.045*
H16B −0.3778 0.1312 0.8085 0.045*
H16C −0.3554 0.1414 0.8999 0.045*
C17 −0.1340 (2) 0.26337 (10) 0.84314 (9) 0.0242 (3)
H17A −0.2175 0.2759 0.7970 0.036*
H17B −0.0148 0.2908 0.8384 0.036*
H17C −0.1853 0.2871 0.8883 0.036*
C18 0.0197 (2) 0.14110 (12) 0.92760 (8) 0.0259 (4)
H18A 0.0268 0.0774 0.9357 0.039*
H18B −0.0301 0.1690 0.9714 0.039*
H18C 0.1426 0.1643 0.9228 0.039*
H1N1 0.269 (3) 0.1724 (13) 0.1938 (11) 0.032 (5)*
H1N2 0.235 (3) 0.0455 (12) 0.2878 (10) 0.019 (4)*
H1N3 0.276 (3) 0.0588 (12) 0.7132 (10) 0.023 (5)*
H1N4 0.215 (3) 0.1885 (12) 0.8028 (11) 0.025 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0249 (6) 0.0224 (5) 0.0232 (5) 0.0051 (4) −0.0001 (5) 0.0054 (4)
O2 0.0197 (6) 0.0175 (5) 0.0182 (5) −0.0023 (4) 0.0031 (4) 0.0015 (4)
O3 0.0208 (6) 0.0174 (5) 0.0184 (5) 0.0020 (4) 0.0041 (4) 0.0004 (4)
O4 0.0255 (6) 0.0245 (5) 0.0217 (5) −0.0061 (5) 0.0013 (5) −0.0053 (4)
N1 0.0213 (7) 0.0212 (6) 0.0133 (5) 0.0034 (5) 0.0050 (5) 0.0042 (5)
N2 0.0246 (7) 0.0188 (6) 0.0127 (5) −0.0039 (5) 0.0057 (5) 0.0006 (4)
N3 0.0217 (7) 0.0184 (6) 0.0123 (5) 0.0038 (5) 0.0049 (5) −0.0008 (4)
N4 0.0192 (7) 0.0203 (6) 0.0131 (5) −0.0009 (5) 0.0050 (5) −0.0044 (4)
C1 0.0166 (7) 0.0180 (6) 0.0133 (6) 0.0001 (5) 0.0024 (5) −0.0026 (5)
C2 0.0183 (7) 0.0148 (6) 0.0183 (6) −0.0005 (5) 0.0020 (5) 0.0001 (5)
C3 0.0157 (7) 0.0176 (6) 0.0139 (6) −0.0008 (5) 0.0021 (5) 0.0008 (5)
C4 0.0113 (7) 0.0180 (6) 0.0132 (6) 0.0003 (5) 0.0012 (5) −0.0015 (5)
C5 0.0142 (7) 0.0151 (6) 0.0155 (6) −0.0009 (5) 0.0015 (5) −0.0002 (5)
C6 0.0116 (7) 0.0177 (6) 0.0133 (6) −0.0011 (5) 0.0005 (5) 0.0006 (5)
C7 0.0123 (7) 0.0179 (6) 0.0157 (6) 0.0018 (5) 0.0025 (5) 0.0008 (5)
C8 0.0215 (8) 0.0157 (6) 0.0160 (6) −0.0003 (5) 0.0024 (5) −0.0004 (5)
C9 0.0231 (8) 0.0247 (7) 0.0192 (7) 0.0043 (6) 0.0078 (6) 0.0055 (6)
C10 0.0371 (12) 0.0497 (11) 0.0387 (10) 0.0206 (9) 0.0236 (9) 0.0158 (9)
C11 0.0261 (9) 0.0297 (8) 0.0287 (8) −0.0028 (7) 0.0037 (7) 0.0079 (7)
C12 0.0373 (10) 0.0286 (8) 0.0157 (7) −0.0005 (7) 0.0059 (6) 0.0005 (6)
C13 0.0126 (7) 0.0172 (6) 0.0158 (6) −0.0019 (5) 0.0026 (5) −0.0003 (5)
C14 0.0197 (8) 0.0153 (6) 0.0148 (6) −0.0008 (5) 0.0028 (5) 0.0010 (5)
C15 0.0183 (8) 0.0201 (7) 0.0180 (6) −0.0006 (6) 0.0061 (5) −0.0014 (5)
C16 0.0243 (9) 0.0319 (9) 0.0350 (9) −0.0069 (7) 0.0121 (7) −0.0048 (7)
C17 0.0245 (9) 0.0225 (7) 0.0265 (7) 0.0012 (6) 0.0067 (6) −0.0031 (6)
C18 0.0290 (9) 0.0340 (9) 0.0155 (7) 0.0056 (7) 0.0057 (6) −0.0006 (6)

Geometric parameters (Å, °)

O1—C8 1.2252 (17) C8—C9 1.536 (2)
O2—C7 1.2295 (17) C9—C10 1.525 (2)
O3—C13 1.2273 (17) C9—C12 1.536 (2)
O4—C14 1.2261 (17) C9—C11 1.538 (2)
N1—C8 1.359 (2) C10—H10A 0.9600
N1—N2 1.3935 (16) C10—H10B 0.9600
N1—H1N1 0.90 (2) C10—H10C 0.9600
N2—C7 1.3559 (17) C11—H11A 0.9600
N2—H1N2 0.844 (18) C11—H11B 0.9600
N3—C13 1.3592 (17) C11—H11C 0.9600
N3—N4 1.3942 (16) C12—H12A 0.9600
N3—H1N3 0.876 (18) C12—H12B 0.9600
N4—C14 1.357 (2) C12—H12C 0.9600
N4—H1N4 0.879 (19) C14—C15 1.5314 (19)
C1—C2 1.3920 (18) C15—C16 1.519 (2)
C1—C6 1.3951 (19) C15—C18 1.536 (2)
C1—H1A 0.9300 C15—C17 1.538 (2)
C2—C3 1.3874 (19) C16—H16A 0.9600
C2—H2A 0.9300 C16—H16B 0.9600
C3—C4 1.3973 (19) C16—H16C 0.9600
C3—H3A 0.9300 C17—H17A 0.9600
C4—C5 1.3926 (18) C17—H17B 0.9600
C4—C13 1.4990 (19) C17—H17C 0.9600
C5—C6 1.3937 (18) C18—H18A 0.9600
C5—H5A 0.9300 C18—H18B 0.9600
C6—C7 1.4979 (19) C18—H18C 0.9600
C8—N1—N2 117.82 (12) C9—C10—H10C 109.5
C8—N1—H1N1 123.8 (13) H10A—C10—H10C 109.5
N2—N1—H1N1 118.3 (13) H10B—C10—H10C 109.5
C7—N2—N1 120.25 (12) C9—C11—H11A 109.5
C7—N2—H1N2 122.2 (12) C9—C11—H11B 109.5
N1—N2—H1N2 114.5 (12) H11A—C11—H11B 109.5
C13—N3—N4 118.68 (12) C9—C11—H11C 109.5
C13—N3—H1N3 121.8 (12) H11A—C11—H11C 109.5
N4—N3—H1N3 114.6 (12) H11B—C11—H11C 109.5
C14—N4—N3 117.68 (12) C9—C12—H12A 109.5
C14—N4—H1N4 121.6 (12) C9—C12—H12B 109.5
N3—N4—H1N4 120.4 (12) H12A—C12—H12B 109.5
C2—C1—C6 119.81 (12) C9—C12—H12C 109.5
C2—C1—H1A 120.1 H12A—C12—H12C 109.5
C6—C1—H1A 120.1 H12B—C12—H12C 109.5
C3—C2—C1 120.54 (13) O3—C13—N3 122.45 (12)
C3—C2—H2A 119.7 O3—C13—C4 121.99 (12)
C1—C2—H2A 119.7 N3—C13—C4 115.51 (12)
C2—C3—C4 119.93 (12) O4—C14—N4 120.13 (13)
C2—C3—H3A 120.0 O4—C14—C15 122.80 (14)
C4—C3—H3A 120.0 N4—C14—C15 117.07 (12)
C5—C4—C3 119.52 (12) C16—C15—C14 108.38 (12)
C5—C4—C13 117.80 (12) C16—C15—C18 110.34 (13)
C3—C4—C13 122.63 (12) C14—C15—C18 109.82 (12)
C4—C5—C6 120.60 (13) C16—C15—C17 109.03 (13)
C4—C5—H5A 119.7 C14—C15—C17 109.77 (12)
C6—C5—H5A 119.7 C18—C15—C17 109.48 (12)
C5—C6—C1 119.60 (12) C15—C16—H16A 109.5
C5—C6—C7 117.34 (12) C15—C16—H16B 109.5
C1—C6—C7 123.03 (12) H16A—C16—H16B 109.5
O2—C7—N2 122.34 (12) C15—C16—H16C 109.5
O2—C7—C6 121.90 (12) H16A—C16—H16C 109.5
N2—C7—C6 115.66 (12) H16B—C16—H16C 109.5
O1—C8—N1 120.54 (13) C15—C17—H17A 109.5
O1—C8—C9 122.55 (14) C15—C17—H17B 109.5
N1—C8—C9 116.91 (12) H17A—C17—H17B 109.5
C10—C9—C12 109.22 (14) C15—C17—H17C 109.5
C10—C9—C8 107.75 (13) H17A—C17—H17C 109.5
C12—C9—C8 110.45 (13) H17B—C17—H17C 109.5
C10—C9—C11 109.98 (15) C15—C18—H18A 109.5
C12—C9—C11 109.34 (12) C15—C18—H18B 109.5
C8—C9—C11 110.08 (12) H18A—C18—H18B 109.5
C9—C10—H10A 109.5 C15—C18—H18C 109.5
C9—C10—H10B 109.5 H18A—C18—H18C 109.5
H10A—C10—H10B 109.5 H18B—C18—H18C 109.5
C8—N1—N2—C7 85.19 (17) O1—C8—C9—C10 13.0 (2)
C13—N3—N4—C14 76.61 (17) N1—C8—C9—C10 −166.35 (14)
C6—C1—C2—C3 −0.6 (2) O1—C8—C9—C12 132.24 (15)
C1—C2—C3—C4 0.2 (2) N1—C8—C9—C12 −47.12 (17)
C2—C3—C4—C5 0.0 (2) O1—C8—C9—C11 −106.92 (16)
C2—C3—C4—C13 177.12 (13) N1—C8—C9—C11 73.72 (17)
C3—C4—C5—C6 0.1 (2) N4—N3—C13—O3 21.9 (2)
C13—C4—C5—C6 −177.15 (13) N4—N3—C13—C4 −160.69 (12)
C4—C5—C6—C1 −0.5 (2) C5—C4—C13—O3 25.5 (2)
C4—C5—C6—C7 −178.47 (13) C3—C4—C13—O3 −151.62 (15)
C2—C1—C6—C5 0.7 (2) C5—C4—C13—N3 −151.89 (13)
C2—C1—C6—C7 178.61 (13) C3—C4—C13—N3 31.0 (2)
N1—N2—C7—O2 17.9 (2) N3—N4—C14—O4 0.9 (2)
N1—N2—C7—C6 −165.58 (12) N3—N4—C14—C15 −179.64 (12)
C5—C6—C7—O2 22.5 (2) O4—C14—C15—C16 5.10 (19)
C1—C6—C7—O2 −155.42 (14) N4—C14—C15—C16 −174.36 (13)
C5—C6—C7—N2 −154.00 (13) O4—C14—C15—C18 125.70 (15)
C1—C6—C7—N2 28.1 (2) N4—C14—C15—C18 −53.76 (17)
N2—N1—C8—O1 −3.9 (2) O4—C14—C15—C17 −113.89 (16)
N2—N1—C8—C9 175.47 (12) N4—C14—C15—C17 66.65 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O3i 0.90 (2) 2.12 (2) 3.0193 (16) 176.7 (16)
N2—H1N2···O4ii 0.845 (18) 1.993 (19) 2.8262 (17) 169 (2)
N3—H1N3···O1iii 0.876 (18) 1.969 (18) 2.8307 (16) 167.3 (16)
N4—H1N4···O2iv 0.878 (19) 2.059 (19) 2.9320 (16) 172.3 (19)
C1—H1A···O4ii 0.93 2.48 3.1879 (17) 133
C3—H3A···O1iii 0.93 2.56 3.2854 (17) 135
C12—H12C···O3i 0.96 2.52 3.433 (2) 159
C18—H18C···N4 0.96 2.61 2.9347 (19) 100

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, −y, −z+1; (iii) −x+1, −y, −z+1; (iv) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2255).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bruker (2005). APEX2 (Version 1.27), SAINT (Version V7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Feng, D.-J., Wang, P., Li, X.-Q. & Li, Z.-T. (2006). Chin. J. Chem.24, 1200–1208.
  4. Fernández, R., Ferrete, A., Llera, J. M., Magriz, A., Martín-Zamora, E., Díez, E. & Lassaletta, J. M. (2004). Chem. Eur. J.10, 737–745. [DOI] [PubMed]
  5. Hołtra, A., Drożdżewski, P. & Kubiak, M. (2007). Polyhedron, 26, 2786–2794.
  6. Imramovský, A., Polanc, S., Vinšová, J., Kočevar, M., Jampílek, J., Rečková, Z. & Kaustová, J. (2007). Bioorg. Med. Chem.15, 2551–2559. [DOI] [PubMed]
  7. Kim, H.-Y., Lee, W.-J., Kang, H.-M. & Cho, C.-G. (2007). Org. Lett.9, 3185–3186. [DOI] [PubMed]
  8. Lemay, M., Trant, J. & Ogilvie, W. W. (2007). Tetrahedron, 63, 11644–11655.
  9. Liu, F., Stephen, A. G., Adamson, C. S., Gousset, K., Aman, M. J., Freed, E. O., Fisher, R. J. & Burke, T. R. Jr (2006). Org. Lett.8, 5165–5168. [DOI] [PMC free article] [PubMed]
  10. Nica, S., Rudolph, M., Görls, H. & Plass, W. (2007). Inorg. Chim. Acta, 360, 1743–1752.
  11. Raveendran, R. & Pal, S. (2007). J. Organomet. Chem.692, 824–830.
  12. Rivero, M. R. & Buchwald, S. L. (2007). Org. Lett.9, 973–976. [DOI] [PubMed]
  13. Sheldrick, G. M. (1998). SHELXTL Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
  14. Sicardi, S. M., Vega, C. M. & Cimijotti, E. B. (1980). J. Med. Chem.23, 1139–1142. [DOI] [PubMed]
  15. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  16. Yang, Y., Hu, H.-Y. & Chen, C.-F. (2007). Tetrahedron Lett.48, 3505–3509.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807063210/is2255sup1.cif

e-64-0o175-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063210/is2255Isup2.hkl

e-64-0o175-Isup2.hkl (259.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES