Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o215. doi: 10.1107/S1600536807065117

2,6-Di-tert-butyl-4-(dimethyl­amino­meth­yl)phenol

Tao Zeng a,*, Yu-Ping Hou b
PMCID: PMC2915276  PMID: 21200781

Abstract

The title compound, C17H29NO, is an important hindered phenol derivative. The asymmetric unit contains two mol­ecules. Molecules inter­act through O—H⋯N hydrogen bonds to form a tetramer arranged around a twofold rotation axis.

Related literature

For related literature, see: Ciba-Geigy AG (1978); Eggensperger et al. (1974, 1976); Yamazaki & Seguchi (1997). For the synthesis, see: Coffield (1965); Coffield & Mich (1965); Rieker et al. (1968).graphic file with name e-64-0o215-scheme1.jpg

Experimental

Crystal data

  • C17H29NO

  • M r = 263.41

  • Monoclinic, Inline graphic

  • a = 28.731 (9) Å

  • b = 8.912 (3) Å

  • c = 16.112 (5) Å

  • β = 122.965 (5)°

  • V = 3461.4 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 294 (2) K

  • 0.24 × 0.22 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.978, T max = 0.989

  • 6903 measured reflections

  • 3752 independent reflections

  • 2317 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.112

  • S = 0.99

  • 3752 reflections

  • 359 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807065117/dn2296sup1.cif

e-64-0o215-sup1.cif (25.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065117/dn2296Isup2.hkl

e-64-0o215-Isup2.hkl (337.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.85 2.20 2.836 (3) 132
O2—H2⋯N1i 0.86 2.26 2.933 (3) 135

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge financial support from the Start Foundation for Doctors (HY07116) of Yantai University.

supplementary crystallographic information

Comment

Hindered phenol antioxidants are widely used in polymers and lubricants. It could protect polymers by increasing both their process stability and long-term stability against oxidative degradation (Yamazaki & Seguchi, 1997). Moreover, ester of 3,5-di-tert-butyl-4-hydroxyphenol acetic acid is one important kind of antioxidant derivative. An important route to prepare these compounds is to react an α-halo ester compound with the title compound in the presence of a strong base (Eggensperger et al., 1974, 1976; Eggensperger et al., 1976; Ciba-Geigy AG, 1978). The title compound is ususlly called a Mannich base. The title compound was prepared from 4-bromomethyl-2,6-di-tert-butyl-phenol and N,N-dimethylamine.It can also be easily obtained by a Mannich reaction from 2,6-di-tert-butylphenol,formaldehyde and dimethylamine (Coffield, 1965; Coffield & Mich, 1965).

The asymmetric unit of the title compound contains two molecules which are linked by a weak O—H···N hydrogen bond (Fig. 1). Each pseudo dimer interacts with a symmetry related one to build up like a crown arranged around axis parallele to the b axis through O—H··· hydrogen bonds (Table 1, Fig. 2).

Experimental

The 4-bromomethyl-2,6-di-tert-butyl-phenol was synthesized according to the method described by Rieker(Rieker et al.,1968). Dimethylamine (2.7 g, 0.06 mol) and 4-bromomethyl-2,6-di-tert-butyl-phenol (9.0 g, 0.03 mol) were added, with stirring to THF(60 ml)at 273 K. The reaction mixture was stirred at 273 K for a further 2 h. The solvent THF was evaporated under reduced pressure and the residual was washed with water (30 ml). The product (7.39 g) was obtained in a yield of 93.6%. Suitable crystals were obtained by slow evaporation of a mixture of ethyl acetate and ethanol.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) and 0.96 Å (methyle) with Uiso(H) = 1.2(aromatic) or 1.5(methyle)Ueq(C). H atoms of hydroxyle group were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H= 0.85 (1) Å) with Uiso(H) = 1.5Ueq(O). In the final stage of refinement, they were treated as riding on their parent O atoms.

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1.

Fig. 1.

View of the two crystallygraphically independent molecules with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as dashed line. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

View of the crown formed by the assembly of four molecules through O—H···N hydrogen bonds. Dashed lines indicate the hydrogen bonds.H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C17H29NO F000 = 1168
Mr = 263.41 Dx = 1.011 Mg m3
Monoclinic, C2 Mo Kα radiation λ = 0.71073 Å
Hall symbol: C 2y Cell parameters from 2365 reflections
a = 28.731 (9) Å θ = 2.4–21.0º
b = 8.912 (3) Å µ = 0.06 mm1
c = 16.112 (5) Å T = 294 (2) K
β = 122.965 (5)º Block, colourless
V = 3461.4 (19) Å3 0.24 × 0.22 × 0.20 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer 3752 independent reflections
Radiation source: fine-focus sealed tube 2317 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.040
T = 294(2) K θmax = 26.4º
φ and ω scans θmin = 1.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −35→29
Tmin = 0.978, Tmax = 0.989 k = −11→11
6903 measured reflections l = 0→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.112   w = 1/[σ2(Fo2) + (0.0567P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max = 0.001
3752 reflections Δρmax = 0.12 e Å3
359 parameters Δρmin = −0.18 e Å3
3 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.96396 (9) −0.0075 (3) 0.26691 (14) 0.0632 (7)
H1 0.9775 −0.0898 0.2629 0.076*
O2 1.20963 (9) 0.0785 (3) 0.24701 (16) 0.0604 (6)
H2 1.1990 0.1526 0.2069 0.073*
N1 0.76397 (10) 0.2845 (3) −0.13626 (17) 0.0531 (7)
N2 1.05111 (10) −0.2181 (3) 0.37179 (17) 0.0466 (6)
C1 0.91498 (12) 0.0341 (3) 0.1819 (2) 0.0442 (7)
C2 0.89225 (12) −0.0421 (3) 0.0907 (2) 0.0442 (7)
C3 0.84136 (12) 0.0109 (4) 0.0118 (2) 0.0478 (8)
H3 0.8253 −0.0377 −0.0488 0.057*
C4 0.81353 (12) 0.1321 (4) 0.0193 (2) 0.0486 (8)
C5 0.83809 (12) 0.2039 (4) 0.1103 (2) 0.0488 (8)
H5 0.8198 0.2850 0.1163 0.059*
C6 0.88894 (12) 0.1598 (3) 0.1930 (2) 0.0445 (8)
C7 0.91528 (13) 0.2442 (4) 0.2931 (2) 0.0503 (8)
C8 0.91655 (15) 0.1407 (4) 0.3709 (2) 0.0657 (10)
H8A 0.9389 0.0542 0.3808 0.099*
H8B 0.8795 0.1093 0.3481 0.099*
H8C 0.9320 0.1940 0.4322 0.099*
C9 0.97393 (13) 0.3002 (4) 0.3292 (3) 0.0663 (10)
H9A 0.9881 0.3577 0.3887 0.099*
H9B 0.9726 0.3621 0.2792 0.099*
H9C 0.9978 0.2158 0.3424 0.099*
C10 0.88150 (15) 0.3852 (4) 0.2835 (3) 0.0685 (10)
H10A 0.8984 0.4338 0.3467 0.103*
H10B 0.8443 0.3565 0.2614 0.103*
H10C 0.8808 0.4530 0.2365 0.103*
C11 0.92034 (13) −0.1804 (4) 0.0773 (2) 0.0517 (8)
C12 0.97975 (13) −0.1438 (4) 0.1057 (2) 0.0610 (9)
H12A 0.9948 −0.2285 0.0913 0.091*
H12B 1.0025 −0.1214 0.1751 0.091*
H12C 0.9789 −0.0585 0.0684 0.091*
C13 0.91972 (15) −0.3122 (4) 0.1393 (3) 0.0674 (10)
H13A 0.8821 −0.3347 0.1180 0.101*
H13B 0.9403 −0.2846 0.2080 0.101*
H13C 0.9364 −0.3990 0.1305 0.101*
C14 0.88828 (15) −0.2344 (5) −0.0307 (2) 0.0774 (11)
H14A 0.8867 −0.1550 −0.0724 0.116*
H14B 0.8513 −0.2623 −0.0507 0.116*
H14C 0.9068 −0.3195 −0.0364 0.116*
C15 0.75856 (13) 0.1836 (4) −0.0695 (2) 0.0594 (9)
H15A 0.7373 0.0961 −0.1066 0.071*
H15B 0.7379 0.2349 −0.0463 0.071*
C16 0.78926 (17) 0.4270 (4) −0.0877 (3) 0.0712 (11)
H16A 0.7927 0.4902 −0.1323 0.107*
H16B 0.8253 0.4087 −0.0296 0.107*
H16C 0.7663 0.4757 −0.0694 0.107*
C17 0.70858 (14) 0.3107 (5) −0.2253 (3) 0.0816 (12)
H17A 0.6856 0.3598 −0.2071 0.122*
H17B 0.6922 0.2164 −0.2563 0.122*
H17C 0.7118 0.3730 −0.2706 0.122*
C18 1.17964 (12) 0.0384 (3) 0.2871 (2) 0.0412 (7)
C19 1.20150 (11) −0.0867 (3) 0.3518 (2) 0.0404 (7)
C20 1.17375 (11) −0.1308 (4) 0.3964 (2) 0.0458 (7)
H20 1.1880 −0.2108 0.4406 0.055*
C21 1.12606 (12) −0.0621 (4) 0.3786 (2) 0.0446 (7)
C22 1.10584 (12) 0.0591 (4) 0.3143 (2) 0.0441 (7)
H22 1.0739 0.1067 0.3023 0.053*
C23 1.13113 (12) 0.1136 (3) 0.2665 (2) 0.0412 (7)
C24 1.10825 (12) 0.2547 (3) 0.2001 (2) 0.0483 (8)
C25 1.05452 (14) 0.3120 (4) 0.1893 (3) 0.0717 (10)
H25A 1.0268 0.2348 0.1605 0.108*
H25B 1.0414 0.3991 0.1475 0.108*
H25C 1.0620 0.3379 0.2533 0.108*
C26 1.15096 (15) 0.3832 (4) 0.2467 (3) 0.0664 (10)
H26A 1.1587 0.4053 0.3114 0.100*
H26B 1.1362 0.4709 0.2058 0.100*
H26C 1.1846 0.3534 0.2520 0.100*
C27 1.09303 (14) 0.2209 (4) 0.0937 (2) 0.0634 (10)
H27A 1.1259 0.1938 0.0956 0.095*
H27B 1.0768 0.3085 0.0532 0.095*
H27C 1.0670 0.1395 0.0664 0.095*
C28 1.25469 (11) −0.1685 (3) 0.3744 (2) 0.0468 (8)
C29 1.30491 (13) −0.0619 (5) 0.4262 (2) 0.0657 (10)
H29A 1.3382 −0.1173 0.4467 0.099*
H29B 1.3076 −0.0179 0.4830 0.099*
H29C 1.3003 0.0159 0.3811 0.099*
C30 1.24665 (13) −0.2338 (4) 0.2788 (2) 0.0596 (9)
H30A 1.2413 −0.1533 0.2348 0.089*
H30B 1.2147 −0.2981 0.2473 0.089*
H30C 1.2789 −0.2904 0.2947 0.089*
C31 1.26844 (15) −0.3037 (5) 0.4444 (3) 0.0738 (11)
H31A 1.3006 −0.3546 0.4547 0.111*
H31B 1.2376 −0.3717 0.4152 0.111*
H31C 1.2757 −0.2688 0.5067 0.111*
C32 1.09783 (13) −0.1136 (4) 0.4303 (2) 0.0552 (9)
H32A 1.1252 −0.1622 0.4919 0.066*
H32B 1.0843 −0.0261 0.4466 0.066*
C33 1.06835 (14) −0.3538 (4) 0.3442 (3) 0.0620 (9)
H33A 1.0960 −0.4056 0.4029 0.093*
H33B 1.0835 −0.3266 0.3059 0.093*
H33C 1.0368 −0.4181 0.3057 0.093*
C34 1.02793 (14) −0.2575 (5) 0.4305 (3) 0.0706 (11)
H34A 0.9968 −0.3233 0.3929 0.106*
H34B 1.0161 −0.1680 0.4470 0.106*
H34C 1.0557 −0.3072 0.4902 0.106*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0632 (14) 0.0591 (14) 0.0435 (12) 0.0226 (12) 0.0135 (11) −0.0036 (11)
O2 0.0607 (14) 0.0630 (14) 0.0759 (15) 0.0133 (12) 0.0490 (12) 0.0255 (13)
N1 0.0567 (16) 0.0494 (16) 0.0451 (14) 0.0094 (14) 0.0225 (13) 0.0080 (13)
N2 0.0505 (15) 0.0470 (15) 0.0540 (14) 0.0018 (13) 0.0359 (13) 0.0041 (13)
C1 0.0402 (17) 0.0464 (19) 0.0407 (16) 0.0025 (15) 0.0185 (14) 0.0058 (15)
C2 0.0463 (18) 0.0427 (18) 0.0411 (17) −0.0050 (15) 0.0222 (15) 0.0025 (15)
C3 0.0455 (18) 0.0478 (19) 0.0395 (16) −0.0097 (15) 0.0162 (15) 0.0009 (14)
C4 0.0409 (17) 0.054 (2) 0.0487 (18) −0.0009 (16) 0.0227 (15) 0.0098 (16)
C5 0.0469 (18) 0.0479 (18) 0.058 (2) 0.0057 (15) 0.0327 (17) 0.0112 (16)
C6 0.0457 (18) 0.0461 (19) 0.0457 (17) −0.0019 (15) 0.0276 (16) 0.0043 (15)
C7 0.0529 (19) 0.050 (2) 0.0565 (19) −0.0006 (16) 0.0356 (16) −0.0011 (16)
C8 0.080 (3) 0.071 (2) 0.055 (2) 0.004 (2) 0.0430 (19) 0.0030 (19)
C9 0.063 (2) 0.065 (2) 0.076 (2) −0.0129 (19) 0.0405 (19) −0.015 (2)
C10 0.080 (2) 0.063 (2) 0.072 (2) 0.010 (2) 0.048 (2) −0.003 (2)
C11 0.0546 (19) 0.0449 (18) 0.0439 (17) 0.0024 (16) 0.0193 (15) −0.0038 (15)
C12 0.065 (2) 0.062 (2) 0.0564 (19) 0.0093 (19) 0.0335 (17) −0.0006 (18)
C13 0.071 (2) 0.044 (2) 0.072 (2) −0.0013 (18) 0.029 (2) 0.0050 (18)
C14 0.084 (3) 0.065 (2) 0.056 (2) 0.006 (2) 0.0209 (19) −0.014 (2)
C15 0.0464 (19) 0.065 (2) 0.058 (2) 0.0038 (17) 0.0227 (16) 0.0119 (18)
C16 0.101 (3) 0.049 (2) 0.070 (2) 0.006 (2) 0.050 (2) 0.0000 (18)
C17 0.070 (2) 0.093 (3) 0.060 (2) 0.028 (2) 0.021 (2) 0.019 (2)
C18 0.0420 (17) 0.0431 (17) 0.0387 (15) −0.0036 (14) 0.0220 (14) −0.0010 (14)
C19 0.0360 (16) 0.0428 (18) 0.0347 (15) −0.0041 (13) 0.0144 (13) −0.0039 (13)
C20 0.0453 (18) 0.0444 (17) 0.0399 (16) −0.0064 (15) 0.0182 (14) 0.0009 (14)
C21 0.0435 (18) 0.0500 (19) 0.0414 (16) −0.0099 (16) 0.0238 (14) −0.0088 (15)
C22 0.0419 (17) 0.0453 (18) 0.0465 (16) −0.0054 (15) 0.0248 (15) −0.0100 (15)
C23 0.0392 (16) 0.0386 (17) 0.0423 (16) −0.0044 (14) 0.0199 (14) −0.0079 (13)
C24 0.0528 (18) 0.0432 (18) 0.0509 (17) 0.0055 (16) 0.0296 (15) −0.0011 (15)
C25 0.075 (2) 0.059 (2) 0.089 (3) 0.023 (2) 0.050 (2) 0.012 (2)
C26 0.080 (2) 0.0441 (19) 0.076 (2) −0.0067 (19) 0.043 (2) −0.0042 (19)
C27 0.067 (2) 0.067 (2) 0.0489 (19) 0.016 (2) 0.0262 (17) 0.0066 (18)
C28 0.0370 (16) 0.0526 (19) 0.0404 (17) 0.0061 (15) 0.0144 (14) 0.0058 (15)
C29 0.0404 (18) 0.081 (3) 0.062 (2) −0.0071 (18) 0.0188 (16) −0.013 (2)
C30 0.0496 (18) 0.061 (2) 0.059 (2) 0.0088 (18) 0.0236 (17) −0.0061 (18)
C31 0.063 (2) 0.074 (3) 0.076 (2) 0.021 (2) 0.032 (2) 0.028 (2)
C32 0.062 (2) 0.061 (2) 0.0483 (18) −0.0064 (18) 0.0341 (17) −0.0044 (17)
C33 0.052 (2) 0.049 (2) 0.081 (2) 0.0040 (17) 0.0329 (18) 0.0002 (19)
C34 0.073 (2) 0.086 (3) 0.072 (2) 0.003 (2) 0.052 (2) 0.020 (2)

Geometric parameters (Å, °)

O1—C1 1.377 (3) C16—H16B 0.9600
O1—H1 0.8495 C16—H16C 0.9600
O2—C18 1.376 (3) C17—H17A 0.9600
O2—H2 0.8557 C17—H17B 0.9600
N1—C16 1.461 (4) C17—H17C 0.9600
N1—C17 1.470 (4) C18—C23 1.413 (4)
N1—C15 1.474 (4) C18—C19 1.419 (4)
N2—C33 1.465 (4) C19—C20 1.389 (4)
N2—C34 1.466 (4) C19—C28 1.547 (4)
N2—C32 1.477 (4) C20—C21 1.381 (4)
C1—C6 1.411 (4) C20—H20 0.9300
C1—C2 1.415 (4) C21—C22 1.387 (4)
C2—C3 1.398 (4) C21—C32 1.515 (4)
C2—C11 1.552 (5) C22—C23 1.403 (4)
C3—C4 1.387 (4) C22—H22 0.9300
C3—H3 0.9300 C23—C24 1.547 (4)
C4—C5 1.390 (4) C24—C26 1.542 (4)
C4—C15 1.514 (4) C24—C25 1.543 (4)
C5—C6 1.395 (4) C24—C27 1.551 (4)
C5—H5 0.9300 C25—H25A 0.9600
C6—C7 1.552 (4) C25—H25B 0.9600
C7—C9 1.536 (4) C25—H25C 0.9600
C7—C8 1.541 (4) C26—H26A 0.9600
C7—C10 1.543 (5) C26—H26B 0.9600
C8—H8A 0.9600 C26—H26C 0.9600
C8—H8B 0.9600 C27—H27A 0.9600
C8—H8C 0.9600 C27—H27B 0.9600
C9—H9A 0.9600 C27—H27C 0.9600
C9—H9B 0.9600 C28—C29 1.540 (4)
C9—H9C 0.9600 C28—C30 1.543 (4)
C10—H10A 0.9600 C28—C31 1.547 (5)
C10—H10B 0.9600 C29—H29A 0.9600
C10—H10C 0.9600 C29—H29B 0.9600
C11—C14 1.537 (4) C29—H29C 0.9600
C11—C12 1.542 (4) C30—H30A 0.9600
C11—C13 1.549 (5) C30—H30B 0.9600
C12—H12A 0.9600 C30—H30C 0.9600
C12—H12B 0.9600 C31—H31A 0.9600
C12—H12C 0.9600 C31—H31B 0.9600
C13—H13A 0.9600 C31—H31C 0.9600
C13—H13B 0.9600 C32—H32A 0.9700
C13—H13C 0.9600 C32—H32B 0.9700
C14—H14A 0.9600 C33—H33A 0.9600
C14—H14B 0.9600 C33—H33B 0.9600
C14—H14C 0.9600 C33—H33C 0.9600
C15—H15A 0.9700 C34—H34A 0.9600
C15—H15B 0.9700 C34—H34B 0.9600
C16—H16A 0.9600 C34—H34C 0.9600
C1—O1—H1 114.8 H17A—C17—H17B 109.5
C18—O2—H2 119.8 N1—C17—H17C 109.5
C16—N1—C17 110.1 (3) H17A—C17—H17C 109.5
C16—N1—C15 111.0 (2) H17B—C17—H17C 109.5
C17—N1—C15 108.7 (3) O2—C18—C23 123.8 (2)
C33—N2—C34 110.2 (3) O2—C18—C19 114.1 (2)
C33—N2—C32 112.0 (2) C23—C18—C19 122.1 (3)
C34—N2—C32 108.3 (2) C20—C19—C18 117.0 (3)
O1—C1—C6 114.4 (2) C20—C19—C28 121.1 (3)
O1—C1—C2 123.2 (3) C18—C19—C28 121.9 (3)
C6—C1—C2 122.4 (3) C21—C20—C19 123.4 (3)
C3—C2—C1 116.4 (3) C21—C20—H20 118.3
C3—C2—C11 120.5 (3) C19—C20—H20 118.3
C1—C2—C11 123.1 (3) C20—C21—C22 117.8 (3)
C4—C3—C2 123.5 (3) C20—C21—C32 121.2 (3)
C4—C3—H3 118.3 C22—C21—C32 121.0 (3)
C2—C3—H3 118.3 C21—C22—C23 123.3 (3)
C3—C4—C5 117.6 (3) C21—C22—H22 118.4
C3—C4—C15 120.6 (3) C23—C22—H22 118.4
C5—C4—C15 121.8 (3) C22—C23—C18 116.5 (3)
C4—C5—C6 123.0 (3) C22—C23—C24 120.6 (3)
C4—C5—H5 118.5 C18—C23—C24 122.8 (3)
C6—C5—H5 118.5 C26—C24—C25 106.9 (3)
C5—C6—C1 117.0 (3) C26—C24—C23 109.9 (2)
C5—C6—C7 121.4 (3) C25—C24—C23 111.7 (3)
C1—C6—C7 121.6 (3) C26—C24—C27 110.7 (3)
C9—C7—C8 110.5 (3) C25—C24—C27 106.1 (3)
C9—C7—C10 105.9 (3) C23—C24—C27 111.3 (3)
C8—C7—C10 107.7 (3) C24—C25—H25A 109.5
C9—C7—C6 111.4 (2) C24—C25—H25B 109.5
C8—C7—C6 109.7 (2) H25A—C25—H25B 109.5
C10—C7—C6 111.5 (3) C24—C25—H25C 109.5
C7—C8—H8A 109.5 H25A—C25—H25C 109.5
C7—C8—H8B 109.5 H25B—C25—H25C 109.5
H8A—C8—H8B 109.5 C24—C26—H26A 109.5
C7—C8—H8C 109.5 C24—C26—H26B 109.5
H8A—C8—H8C 109.5 H26A—C26—H26B 109.5
H8B—C8—H8C 109.5 C24—C26—H26C 109.5
C7—C9—H9A 109.5 H26A—C26—H26C 109.5
C7—C9—H9B 109.5 H26B—C26—H26C 109.5
H9A—C9—H9B 109.5 C24—C27—H27A 109.5
C7—C9—H9C 109.5 C24—C27—H27B 109.5
H9A—C9—H9C 109.5 H27A—C27—H27B 109.5
H9B—C9—H9C 109.5 C24—C27—H27C 109.5
C7—C10—H10A 109.5 H27A—C27—H27C 109.5
C7—C10—H10B 109.5 H27B—C27—H27C 109.5
H10A—C10—H10B 109.5 C29—C28—C30 111.1 (3)
C7—C10—H10C 109.5 C29—C28—C19 110.6 (3)
H10A—C10—H10C 109.5 C30—C28—C19 110.5 (2)
H10B—C10—H10C 109.5 C29—C28—C31 107.1 (2)
C14—C11—C12 106.7 (3) C30—C28—C31 105.9 (3)
C14—C11—C13 106.5 (3) C19—C28—C31 111.5 (3)
C12—C11—C13 111.6 (3) C28—C29—H29A 109.5
C14—C11—C2 111.7 (3) C28—C29—H29B 109.5
C12—C11—C2 111.5 (3) H29A—C29—H29B 109.5
C13—C11—C2 108.8 (2) C28—C29—H29C 109.5
C11—C12—H12A 109.5 H29A—C29—H29C 109.5
C11—C12—H12B 109.5 H29B—C29—H29C 109.5
H12A—C12—H12B 109.5 C28—C30—H30A 109.5
C11—C12—H12C 109.5 C28—C30—H30B 109.5
H12A—C12—H12C 109.5 H30A—C30—H30B 109.5
H12B—C12—H12C 109.5 C28—C30—H30C 109.5
C11—C13—H13A 109.5 H30A—C30—H30C 109.5
C11—C13—H13B 109.5 H30B—C30—H30C 109.5
H13A—C13—H13B 109.5 C28—C31—H31A 109.5
C11—C13—H13C 109.5 C28—C31—H31B 109.5
H13A—C13—H13C 109.5 H31A—C31—H31B 109.5
H13B—C13—H13C 109.5 C28—C31—H31C 109.5
C11—C14—H14A 109.5 H31A—C31—H31C 109.5
C11—C14—H14B 109.5 H31B—C31—H31C 109.5
H14A—C14—H14B 109.5 N2—C32—C21 114.4 (2)
C11—C14—H14C 109.5 N2—C32—H32A 108.7
H14A—C14—H14C 109.5 C21—C32—H32A 108.7
H14B—C14—H14C 109.5 N2—C32—H32B 108.7
N1—C15—C4 113.8 (3) C21—C32—H32B 108.7
N1—C15—H15A 108.8 H32A—C32—H32B 107.6
C4—C15—H15A 108.8 N2—C33—H33A 109.5
N1—C15—H15B 108.8 N2—C33—H33B 109.5
C4—C15—H15B 108.8 H33A—C33—H33B 109.5
H15A—C15—H15B 107.7 N2—C33—H33C 109.5
N1—C16—H16A 109.5 H33A—C33—H33C 109.5
N1—C16—H16B 109.5 H33B—C33—H33C 109.5
H16A—C16—H16B 109.5 N2—C34—H34A 109.5
N1—C16—H16C 109.5 N2—C34—H34B 109.5
H16A—C16—H16C 109.5 H34A—C34—H34B 109.5
H16B—C16—H16C 109.5 N2—C34—H34C 109.5
N1—C17—H17A 109.5 H34A—C34—H34C 109.5
N1—C17—H17B 109.5 H34B—C34—H34C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N2 0.85 2.20 2.836 (3) 132
O2—H2···N1i 0.86 2.26 2.933 (3) 135

Symmetry codes: (i) −x+2, y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2296).

References

  1. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Ciba-Geigy AG (1978). Swiss Patent CH597 297.
  4. Coffield, T. H. (1965). US Patent 3 208 859.
  5. Coffield, T. H. & Mich, F. (1965). US Patent 3 225 099.
  6. Eggensperger, H., Franzen, V. & Kloss, W. (1974). US Patent 3 950 382.
  7. Eggensperger, H., Franzen, V. & Kloss, W. (1976). US Patent 3 856 846.
  8. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  9. Rieker, A., Kaufmann, H., Brück, D., Workman, R. & Müller, E. (1968). Tetrahedron, 24, 103–115.
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  13. Yamazaki, T. & Seguchi, T. (1997). J. Polym. Sci. Part A Polym. Chem.35, 2431–2439.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807065117/dn2296sup1.cif

e-64-0o215-sup1.cif (25.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065117/dn2296Isup2.hkl

e-64-0o215-Isup2.hkl (337.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES