Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o219. doi: 10.1107/S1600536807064537

5-Bromo-2-iodo-1,3-dimethyl­benzene

Rui Liu a, Yu-Hao Li a, Wei Luo a, Shan Liu a, Hong-Jun Zhu a,*
PMCID: PMC2915280  PMID: 21200785

Abstract

The asymmetric unit of the title compound, C8H8BrI, contains three independent mol­ecules. In each molecule, the Br, I and C atoms of the methyl groups lie in the benzene ring plane. Intra­molecular C—H⋯I hydrogen bonds result in the formation of three planar five-membered rings, which are nearly coplanar with the adjacent rings.

Related literature

For general background, see: Hu et al. (2001). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-0o219-scheme1.jpg

Experimental

Crystal data

  • C8H8BrI

  • M r = 310.94

  • Triclinic, Inline graphic

  • a = 10.282 (2) Å

  • b = 11.314 (2) Å

  • c = 12.951 (3) Å

  • α = 69.27 (3)°

  • β = 89.11 (3)°

  • γ = 83.70 (3)°

  • V = 1400.1 (6) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 7.64 mm−1

  • T = 294 (2) K

  • 0.10 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.466, T max = 0.466

  • 5802 measured reflections

  • 5481 independent reflections

  • 2809 reflections with I > 2σ(I)

  • R int = 0.042

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.133

  • S = 1.06

  • 5481 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.72 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807064537/hk2404sup1.cif

e-64-0o219-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807064537/hk2404Isup2.hkl

e-64-0o219-Isup2.hkl (268.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯I1 0.96 2.70 3.316 (11) 122
C10—H10A⋯I2 0.96 2.70 3.303 (10) 122
C18—H18A⋯I3 0.96 2.63 3.252 (10) 123

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

The title compound, (I), contains two different halogen groups, which can react with different groups to prepare various function organic compounds by the different reaction activity of Br and I. It is a kind of aromatic organic intermediate that can be used for many fields such as aromatic conductive polymer, organometallic chemistry (Hu et al., 2001). We herein report its crystal structure.

The asymmetric unit of (I) contains three independent molecules (Fig. 1), in which the bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). The Br, I and C atoms of the methyl groups lie in the benzene ring planes. The intramolecular C—H···I hydrogen bonds (Table 2) result in the formations of three planar five-membered rings; B (I1/H1A/C1/C4/C5), D (I2/H10A/C10—C12) and F (I3/H18A/C18—C20). Rings A (C3—C8), C (C11—C16) and E (C19—C24) are, of course, planar and the dihedral angles between them are A/B = 1.29 (3)°, C/D = 1.73 (3)° and E/F = 1.77 (2)°. So, the adjacent rings are also nearly co-planar.

As can be seen from the packing diagram, (Fig. 2), the molecules are stacked along the b axis. The π-π interactions of benzene rings with a face-to-face stacking distance of 3.636 Å are also found.

Experimental

For the preparation of the title compound, a mixture of 4-bromo-2,6-dimethyl- aniline (4.0 g, 20 mmol), concentrated sulfuric acid (40 mmol, 2.24 ml) and water (100 ml) was stirred in an ice bath. When the mixture was below 278 K, the solution of sodium nitrite (1.75 g, 25 mmol) and water (100 ml) was added dropwise. Then, the mixture was added to a solution of KI (3.3 g, 20 mmol) and water (50 ml) with stirring. The solid residue was extracted with boiling hexane (40 ml) and hexane was distilled off. The product was recrystallized from ethanol. The crystals were obtained by dissolving (I) in ethanol (20 ml) and evaporating ethanol slowly at room temperature for about 10 d.

Refinement

H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for aromatic H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C8H8BrI Z = 6
Mr = 310.94 F000 = 864
Triclinic, P1 Dx = 2.213 Mg m3
Hall symbol: -P 1 Melting point: 307 K
a = 10.282 (2) Å Mo Kα radiation λ = 0.71073 Å
b = 11.314 (2) Å Cell parameters from 25 reflections
c = 12.951 (3) Å θ = 10–13º
α = 69.27 (3)º µ = 7.64 mm1
β = 89.11 (3)º T = 294 (2) K
γ = 83.70 (3)º Block, colorless
V = 1400.1 (6) Å3 0.10 × 0.10 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.042
Radiation source: fine-focus sealed tube θmax = 26.0º
Monochromator: graphite θmin = 1.7º
T = 294(2) K h = −12→12
ω/2θ scans k = −12→13
Absorption correction: ψ scan(North et al., 1968) l = 0→15
Tmin = 0.466, Tmax = 0.466 3 standard reflections
5802 measured reflections every 120 min
5481 independent reflections intensity decay: none
2809 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059 H-atom parameters constrained
wR(F2) = 0.133   w = 1/[σ2(Fo2) + (0.050P)2] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
5481 reflections Δρmax = 0.76 e Å3
271 parameters Δρmin = −0.72 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.26694 (7) 0.30503 (8) 0.13847 (7) 0.0898 (3)
I2 0.77050 (7) 0.30518 (8) 0.67167 (8) 0.0901 (3)
I3 0.74437 (8) −0.00666 (8) 0.03475 (6) 0.0798 (3)
Br1 0.90853 (10) 0.36368 (12) 0.15368 (10) 0.0785 (4)
Br2 1.40828 (10) 0.38917 (12) 0.62860 (10) 0.0782 (4)
Br3 0.75298 (12) 0.00304 (14) 0.54991 (9) 0.0891 (4)
C1 0.4494 (11) 0.3088 (11) 0.3459 (8) 0.086 (4)
H1A 0.3588 0.3038 0.3332 0.129*
H1B 0.4573 0.3817 0.3661 0.129*
H1C 0.4847 0.2332 0.4046 0.129*
C2 0.4834 (10) 0.3314 (10) −0.0588 (8) 0.075 (3)
H2A 0.5506 0.3421 −0.1127 0.113*
H2B 0.4144 0.3999 −0.0856 0.113*
H2C 0.4491 0.2520 −0.0459 0.113*
C3 0.5415 (9) 0.3319 (8) 0.0497 (7) 0.050 (2)
C4 0.4687 (8) 0.3180 (8) 0.1459 (8) 0.051 (2)
C5 0.5241 (9) 0.3211 (8) 0.2418 (8) 0.051 (2)
C6 0.6560 (9) 0.3308 (8) 0.2456 (7) 0.048 (2)
H6A 0.6955 0.3292 0.3103 0.058*
C7 0.7295 (9) 0.3430 (8) 0.1529 (8) 0.051 (2)
C8 0.6722 (9) 0.3438 (8) 0.0557 (7) 0.054 (2)
H8A 0.7234 0.3525 −0.0059 0.064*
C9 0.9707 (9) 0.3346 (9) 0.8546 (8) 0.073 (3)
H9A 1.0325 0.3445 0.9050 0.109*
H9B 0.9362 0.2545 0.8875 0.109*
H9C 0.9006 0.4024 0.8382 0.109*
C10 0.9673 (10) 0.3129 (10) 0.4659 (8) 0.070 (3)
H10A 0.8774 0.2996 0.4818 0.105*
H10B 1.0117 0.2411 0.4518 0.105*
H10C 0.9714 0.3883 0.4020 0.105*
C11 1.0326 (9) 0.3283 (8) 0.5637 (7) 0.048 (2)
C12 0.9713 (9) 0.3258 (8) 0.6616 (8) 0.053 (2)
C13 1.0378 (10) 0.3385 (8) 0.7501 (7) 0.053 (2)
C14 1.1692 (9) 0.3532 (8) 0.7396 (7) 0.055 (3)
H14A 1.2160 0.3591 0.7982 0.066*
C15 1.2316 (9) 0.3594 (9) 0.6444 (8) 0.055 (2)
C16 1.1665 (9) 0.3466 (8) 0.5572 (8) 0.058 (3)
H16A 1.2113 0.3502 0.4934 0.070*
C17 0.5044 (9) −0.0355 (10) 0.2075 (8) 0.068 (3)
H17A 0.4380 −0.0454 0.2619 0.102*
H17B 0.5147 −0.1090 0.1861 0.102*
H17C 0.4790 0.0389 0.1440 0.102*
C18 0.9888 (9) 0.0237 (10) 0.1763 (8) 0.072 (3)
H18A 0.9751 0.0152 0.1062 0.108*
H18B 1.0562 −0.0406 0.2178 0.108*
H18C 1.0150 0.1062 0.1647 0.108*
C19 0.8630 (9) 0.0082 (7) 0.2397 (7) 0.047 (2)
C20 0.7480 (9) −0.0034 (8) 0.1963 (7) 0.048 (2)
C21 0.6322 (8) −0.0216 (8) 0.2552 (7) 0.049 (2)
C22 0.6335 (9) −0.0184 (9) 0.3618 (8) 0.058 (3)
H22A 0.5577 −0.0273 0.4028 0.070*
C23 0.7527 (10) −0.0012 (9) 0.4076 (7) 0.056 (3)
C24 0.8632 (8) 0.0125 (8) 0.3466 (7) 0.047 (2)
H24A 0.9400 0.0249 0.3765 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.0426 (4) 0.0927 (6) 0.1290 (8) −0.0114 (4) 0.0064 (4) −0.0322 (5)
I2 0.0441 (4) 0.0918 (6) 0.1307 (7) −0.0115 (4) 0.0106 (4) −0.0342 (5)
I3 0.0972 (6) 0.0946 (6) 0.0534 (4) −0.0077 (5) 0.0096 (4) −0.0345 (4)
Br1 0.0446 (6) 0.0942 (9) 0.1125 (10) −0.0111 (6) 0.0070 (6) −0.0554 (7)
Br2 0.0446 (6) 0.0999 (9) 0.0907 (9) −0.0137 (6) 0.0124 (6) −0.0333 (7)
Br3 0.0792 (8) 0.1468 (12) 0.0609 (7) −0.0395 (8) 0.0175 (6) −0.0538 (8)
C1 0.085 (9) 0.101 (9) 0.076 (8) −0.019 (7) 0.026 (7) −0.034 (7)
C2 0.077 (8) 0.089 (8) 0.066 (7) −0.011 (6) −0.015 (6) −0.034 (6)
C3 0.051 (6) 0.045 (6) 0.058 (6) −0.006 (4) −0.005 (5) −0.023 (5)
C4 0.041 (6) 0.048 (6) 0.061 (6) −0.005 (4) 0.009 (5) −0.014 (5)
C5 0.043 (5) 0.048 (6) 0.057 (6) 0.002 (4) 0.008 (5) −0.014 (5)
C6 0.049 (6) 0.055 (6) 0.041 (5) −0.004 (5) 0.007 (4) −0.019 (5)
C7 0.045 (6) 0.038 (5) 0.069 (7) −0.010 (4) 0.003 (5) −0.018 (5)
C8 0.042 (6) 0.069 (7) 0.053 (6) 0.000 (5) 0.005 (5) −0.028 (5)
C9 0.070 (7) 0.084 (8) 0.078 (7) −0.039 (6) 0.047 (6) −0.040 (6)
C10 0.070 (7) 0.081 (8) 0.072 (7) −0.014 (6) −0.002 (6) −0.039 (6)
C11 0.042 (5) 0.053 (6) 0.043 (5) −0.005 (4) −0.007 (4) −0.010 (4)
C12 0.043 (6) 0.047 (6) 0.071 (7) −0.006 (4) 0.016 (5) −0.026 (5)
C13 0.067 (7) 0.048 (6) 0.043 (6) −0.008 (5) 0.010 (5) −0.017 (5)
C14 0.045 (6) 0.062 (6) 0.051 (6) −0.011 (5) 0.014 (5) −0.012 (5)
C15 0.036 (5) 0.071 (7) 0.062 (6) −0.010 (5) 0.013 (5) −0.029 (5)
C16 0.064 (7) 0.059 (6) 0.054 (6) −0.002 (5) 0.020 (5) −0.024 (5)
C17 0.049 (6) 0.093 (8) 0.068 (7) −0.014 (6) −0.009 (5) −0.033 (6)
C18 0.047 (6) 0.082 (8) 0.084 (8) 0.001 (5) 0.018 (6) −0.030 (6)
C19 0.045 (6) 0.034 (5) 0.050 (6) −0.002 (4) 0.009 (4) −0.002 (4)
C20 0.050 (6) 0.056 (6) 0.037 (5) −0.003 (5) −0.003 (4) −0.017 (4)
C21 0.038 (5) 0.048 (6) 0.058 (6) 0.005 (4) 0.000 (5) −0.015 (5)
C22 0.056 (6) 0.068 (7) 0.058 (6) −0.004 (5) 0.005 (5) −0.032 (5)
C23 0.067 (7) 0.061 (6) 0.043 (6) −0.017 (5) 0.012 (5) −0.021 (5)
C24 0.039 (5) 0.061 (6) 0.038 (5) −0.007 (4) 0.009 (4) −0.015 (4)

Geometric parameters (Å, °)

I1—C4 2.102 (9) C10—H10C 0.9600
Br1—C7 1.881 (9) C11—C12 1.399 (12)
C1—C5 1.513 (13) C11—C16 1.412 (12)
C1—H1A 0.9600 C12—C13 1.401 (12)
C1—H1B 0.9600 C13—C14 1.378 (12)
C1—H1C 0.9600 C14—C15 1.364 (12)
C2—C3 1.537 (11) C14—H14A 0.9300
C2—H2A 0.9600 C15—C16 1.380 (12)
C2—H2B 0.9600 C16—H16A 0.9300
C2—H2C 0.9600 I3—C20 2.106 (8)
C3—C8 1.372 (11) Br3—C23 1.861 (9)
C3—C4 1.413 (12) C17—C21 1.508 (11)
C4—C5 1.387 (12) C17—H17A 0.9600
C5—C6 1.376 (12) C17—H17B 0.9600
C6—C7 1.382 (11) C17—H17C 0.9600
C6—H6A 0.9300 C18—C19 1.515 (11)
C7—C8 1.395 (12) C18—H18A 0.9600
C8—H8A 0.9300 C18—H18B 0.9600
I2—C12 2.100 (9) C18—H18C 0.9600
Br2—C15 1.879 (9) C19—C20 1.356 (11)
C9—C13 1.498 (12) C19—C24 1.402 (11)
C9—H9A 0.9600 C20—C21 1.399 (11)
C9—H9B 0.9600 C21—C22 1.394 (12)
C9—H9C 0.9600 C22—C23 1.431 (12)
C10—C11 1.515 (12) C22—H22A 0.9300
C10—H10A 0.9600 C23—C24 1.365 (11)
C10—H10B 0.9600 C24—H24A 0.9300
C5—C1—H1A 109.5 C11—C12—C13 122.8 (9)
C5—C1—H1B 109.5 C11—C12—I2 117.3 (7)
H1A—C1—H1B 109.5 C13—C12—I2 119.9 (7)
C5—C1—H1C 109.5 C14—C13—C12 118.1 (8)
H1A—C1—H1C 109.5 C14—C13—C9 119.9 (9)
H1B—C1—H1C 109.5 C12—C13—C9 122.0 (9)
C3—C2—H2A 109.5 C15—C14—C13 120.8 (9)
C3—C2—H2B 109.5 C15—C14—H14A 119.6
H2A—C2—H2B 109.5 C13—C14—H14A 119.6
C3—C2—H2C 109.5 C14—C15—C16 121.2 (9)
H2A—C2—H2C 109.5 C14—C15—Br2 120.2 (7)
H2B—C2—H2C 109.5 C16—C15—Br2 118.6 (7)
C8—C3—C4 117.2 (8) C15—C16—C11 120.7 (8)
C8—C3—C2 118.9 (9) C15—C16—H16A 119.6
C4—C3—C2 123.9 (9) C11—C16—H16A 119.6
C5—C4—C3 122.3 (8) C21—C17—H17A 109.5
C5—C4—I1 119.4 (7) C21—C17—H17B 109.5
C3—C4—I1 118.2 (7) H17A—C17—H17B 109.5
C6—C5—C4 119.0 (9) C21—C17—H17C 109.5
C6—C5—C1 116.9 (9) H17A—C17—H17C 109.5
C4—C5—C1 124.0 (9) H17B—C17—H17C 109.5
C5—C6—C7 119.7 (9) C19—C18—H18A 109.5
C5—C6—H6A 120.2 C19—C18—H18B 109.5
C7—C6—H6A 120.2 H18A—C18—H18B 109.5
C6—C7—C8 120.9 (8) C19—C18—H18C 109.5
C6—C7—Br1 120.6 (7) H18A—C18—H18C 109.5
C8—C7—Br1 118.4 (7) H18B—C18—H18C 109.5
C3—C8—C7 120.9 (9) C20—C19—C24 118.0 (8)
C3—C8—H8A 119.5 C20—C19—C18 123.2 (9)
C7—C8—H8A 119.5 C24—C19—C18 118.7 (8)
C13—C9—H9A 109.5 C19—C20—C21 123.6 (8)
C13—C9—H9B 109.5 C19—C20—I3 118.8 (7)
H9A—C9—H9B 109.5 C21—C20—I3 117.5 (6)
C13—C9—H9C 109.5 C22—C21—C20 117.8 (8)
H9A—C9—H9C 109.5 C22—C21—C17 118.3 (8)
H9B—C9—H9C 109.5 C20—C21—C17 123.8 (8)
C11—C10—H10A 109.5 C21—C22—C23 119.3 (8)
C11—C10—H10B 109.5 C21—C22—H22A 120.4
H10A—C10—H10B 109.5 C23—C22—H22A 120.4
C11—C10—H10C 109.5 C24—C23—C22 119.9 (8)
H10A—C10—H10C 109.5 C24—C23—Br3 121.3 (7)
H10B—C10—H10C 109.5 C22—C23—Br3 118.8 (7)
C12—C11—C16 116.3 (8) C23—C24—C19 121.2 (8)
C12—C11—C10 125.5 (9) C23—C24—H24A 119.4
C16—C11—C10 118.1 (8) C19—C24—H24A 119.4
C8—C3—C4—C5 2.5 (13) C12—C13—C14—C15 2.0 (14)
C2—C3—C4—C5 −178.9 (9) C9—C13—C14—C15 −178.8 (8)
C8—C3—C4—I1 178.2 (7) C13—C14—C15—C16 −2.3 (15)
C2—C3—C4—I1 −3.1 (12) C13—C14—C15—Br2 176.4 (7)
C3—C4—C5—C6 −3.7 (14) C14—C15—C16—C11 0.7 (15)
I1—C4—C5—C6 −179.4 (6) Br2—C15—C16—C11 −177.9 (7)
C3—C4—C5—C1 179.0 (9) C12—C11—C16—C15 0.9 (13)
I1—C4—C5—C1 3.3 (13) C10—C11—C16—C15 −179.1 (9)
C4—C5—C6—C7 2.9 (14) C24—C19—C20—C21 −5.4 (13)
C1—C5—C6—C7 −179.6 (8) C18—C19—C20—C21 178.0 (9)
C5—C6—C7—C8 −0.9 (13) C24—C19—C20—I3 178.9 (6)
C5—C6—C7—Br1 177.3 (7) C18—C19—C20—I3 2.2 (12)
C4—C3—C8—C7 −0.4 (13) C19—C20—C21—C22 4.8 (14)
C2—C3—C8—C7 −179.2 (8) I3—C20—C21—C22 −179.4 (6)
C6—C7—C8—C3 −0.3 (14) C19—C20—C21—C17 −179.5 (9)
Br1—C7—C8—C3 −178.6 (7) I3—C20—C21—C17 −3.7 (12)
C16—C11—C12—C13 −1.1 (13) C20—C21—C22—C23 −2.1 (14)
C10—C11—C12—C13 178.9 (9) C17—C21—C22—C23 −178.1 (8)
C16—C11—C12—I2 177.9 (6) C21—C22—C23—C24 0.3 (14)
C10—C11—C12—I2 −2.1 (12) C21—C22—C23—Br3 179.9 (7)
C11—C12—C13—C14 −0.3 (14) C22—C23—C24—C19 −1.0 (14)
I2—C12—C13—C14 −179.3 (7) Br3—C23—C24—C19 179.5 (6)
C11—C12—C13—C9 −179.5 (8) C20—C19—C24—C23 3.4 (13)
I2—C12—C13—C9 1.5 (12) C18—C19—C24—C23 −179.8 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1A···I1 0.96 2.70 3.316 (11) 122
C10—H10A···I2 0.96 2.70 3.303 (10) 122
C18—H18A···I3 0.96 2.63 3.252 (10) 123

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2404).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2000). SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Enraf–Nonius (1985). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. Hu, Y., Ishikawa, Y., Hirai, K. & Tomioka, H. (2001). Bull. Chem. Soc. Jpn, 74, 2207–2218.
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  8. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807064537/hk2404sup1.cif

e-64-0o219-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807064537/hk2404Isup2.hkl

e-64-0o219-Isup2.hkl (268.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES