Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o221. doi: 10.1107/S1600536807064434

2-[(2H-Tetra­zol-2-yl)meth­yl]benzonitrile

Bin Hu a,*, Yong-Xiu Li a
PMCID: PMC2915282  PMID: 21200788

Abstract

The title compound, C9H7N5, is non-planar with a dihedral angle between the substituted benzene and tetra­zole rings of 71.13 (9)°. Molecules are connected in centrosymmetric dimers by weak C—H⋯N inter­actions [C⋯N is 3.548 (5) Å]; these are the only interactions of significance in the crystal structure.

Related literature

For the applications of tetra­zole derivatives as ligands in coordination chemistry, see: Huang et al. (2006); Fu & Zhao (2007); Hu et al. (2007).graphic file with name e-64-0o221-scheme1.jpg

Experimental

Crystal data

  • C9H7N5

  • M r = 185.20

  • Monoclinic, Inline graphic

  • a = 12.213 (11) Å

  • b = 13.724 (13) Å

  • c = 5.549 (5) Å

  • β = 102.24 (2)°

  • V = 909.0 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.22 × 0.15 × 0.1 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.97, T max = 1.00 (expected range = 0.961–0.991)

  • 6450 measured reflections

  • 1493 independent reflections

  • 1185 reflections with I > 2σ(I)

  • R int = 0.098

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.187

  • S = 1.05

  • 1493 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807064434/gg2054sup1.cif

e-64-0o221-sup1.cif (14.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807064434/gg2054Isup2.hkl

e-64-0o221-Isup2.hkl (96.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a JiangXi Provincial Natural Science Foundation grant to Professor Yong-Xiu Li.

supplementary crystallographic information

Comment

Ligands containing tetrazole groups could serve as potential multidentate or bridging building blocks for the construction of polymeric structures as they possess several possible donor N atoms (Huang et al.,2006). The tetrazole functional group has found a wide range of applications in coordination chemistry as ligand in coordination chemistry, in medicinal chemistry as a metabolically stable surrogate for a carboxylic acid group, and in materials science as high density energy materials (Fu et al., 2007). We originally attempted to synthesize complexes featuring Mn metal chains by reaction of the MnCl2.4H2O with 2-(bromomethyl)benzonitrile and 2H-tetrazole ligand. Unfortunately, we obtained only the title compound and we report herein the crystal structure of the title compound, 2-[(2H-tetrazol-2-yl)methyl]benzonitrile (I) (Fig.1).

In the title molecule the bond lengths and angles are in normal ranges (Hu et al., 2007). The phenyl ring is twisted away from coplanarity with the tetrazole ring and forms dihedral angles of 71.13 (9)°.

Experimental

A mixture of 2-(bromomethyl)benzonitrile (39.2 mg, 0.2 mmol), 2H-tetrazole(14 mg, 0.2 mmol), KOH(11.2 mg, 0.2 mmol), MnCl2.4H2O (20 mg, 0.1 mmol), 2 ml me thanol and 0.3 ml H2O were placed in a thick Pyrex tube (ca 20 cm in length). The tube was frozen with liquid N2, evacuated under vacuum and sealed by heat. The tube was then placed into oven at 75 °C for 3 days to give colorless block crystals of the title complex.

Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with d(C—H) = 0.93 and d(N—H) = 0.90Å and Uiso(H) = 1.2Ueq(C or N). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C9H7N5 F000 = 384
Mr = 185.20 Dx = 1.353 Mg m3
Monoclinic, P21/c Melting point: 356 K
Hall symbol: -P 2ybc Mo Kα radiation λ = 0.71073 Å
a = 12.213 (11) Å Cell parameters from 7893 reflections
b = 13.724 (13) Å θ = 3.4–27.5º
c = 5.549 (5) Å µ = 0.09 mm1
β = 102.24 (2)º T = 293 (2) K
V = 909.0 (15) Å3 Block, colorless
Z = 4 0.22 × 0.15 × 0.1 mm

Data collection

Rigaku SCXmini diffractometer 1493 independent reflections
Radiation source: fine-focus sealed tube 1185 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.098
Detector resolution: 13.6612 pixels mm-1 θmax = 25.0º
T = 293(2) K θmin = 3.4º
ω scans h = −14→14
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005) k = −16→16
Tmin = 0.97, Tmax = 1.00 l = −6→6
6450 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059 H-atom parameters constrained
wR(F2) = 0.187   w = 1/[σ2(Fo2) + (0.1044P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
1493 reflections Δρmax = 0.15 e Å3
127 parameters Δρmin = −0.15 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.15609 (14) 0.47882 (13) −0.0640 (4) 0.0489 (6)
C2 0.10185 (16) 0.56933 (17) −0.1044 (5) 0.0666 (7)
H2A 0.0506 0.5814 −0.2510 0.080*
C3 0.1252 (2) 0.64046 (15) 0.0756 (6) 0.0744 (9)
H3A 0.0890 0.7004 0.0505 0.089*
C4 0.2020 (2) 0.62302 (15) 0.2925 (6) 0.0710 (7)
H4A 0.2181 0.6716 0.4117 0.085*
C5 0.25499 (16) 0.53387 (14) 0.3331 (4) 0.0569 (6)
H5A 0.3059 0.5226 0.4806 0.068*
C6 0.23325 (13) 0.46083 (12) 0.1566 (3) 0.0432 (5)
C7 0.12946 (15) 0.40397 (17) −0.2487 (4) 0.0569 (6)
C8 0.29305 (15) 0.36441 (12) 0.2059 (4) 0.0465 (6)
H8A 0.3078 0.3507 0.3813 0.056*
H8B 0.2454 0.3130 0.1212 0.056*
C9 0.51482 (17) 0.36439 (14) −0.0975 (4) 0.0587 (6)
H9A 0.5480 0.3608 −0.2334 0.070*
N1 0.10778 (17) 0.34457 (16) −0.3975 (4) 0.0754 (7)
N2 0.39950 (12) 0.36529 (9) 0.1217 (3) 0.0433 (5)
N3 0.49695 (14) 0.37893 (13) 0.2704 (3) 0.0630 (6)
N4 0.57203 (15) 0.37836 (15) 0.1306 (4) 0.0678 (6)
N5 0.40562 (14) 0.35604 (12) −0.1126 (3) 0.0552 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0428 (10) 0.0547 (11) 0.0522 (12) 0.0003 (8) 0.0167 (9) 0.0067 (8)
C2 0.0547 (13) 0.0700 (14) 0.0783 (15) 0.0112 (10) 0.0212 (12) 0.0261 (13)
C3 0.0700 (16) 0.0464 (12) 0.119 (2) 0.0109 (10) 0.0484 (17) 0.0138 (13)
C4 0.0750 (16) 0.0529 (12) 0.0948 (19) −0.0049 (10) 0.0396 (15) −0.0139 (12)
C5 0.0562 (13) 0.0592 (12) 0.0584 (13) −0.0083 (9) 0.0191 (11) −0.0097 (9)
C6 0.0407 (10) 0.0452 (9) 0.0463 (11) −0.0036 (7) 0.0153 (9) 0.0037 (8)
C7 0.0463 (11) 0.0757 (14) 0.0472 (12) −0.0005 (10) 0.0066 (10) 0.0048 (10)
C8 0.0457 (11) 0.0477 (11) 0.0480 (11) −0.0004 (7) 0.0139 (9) 0.0058 (8)
C9 0.0521 (13) 0.0689 (14) 0.0585 (14) −0.0083 (9) 0.0196 (11) −0.0109 (10)
N1 0.0696 (13) 0.0911 (15) 0.0605 (13) 0.0000 (10) 0.0024 (11) −0.0086 (11)
N2 0.0433 (9) 0.0448 (9) 0.0411 (9) 0.0003 (6) 0.0072 (7) 0.0010 (6)
N3 0.0460 (11) 0.0896 (13) 0.0505 (11) −0.0045 (8) 0.0034 (9) −0.0062 (9)
N4 0.0452 (10) 0.0904 (13) 0.0682 (13) −0.0071 (8) 0.0133 (10) −0.0068 (10)
N5 0.0523 (11) 0.0683 (11) 0.0455 (10) −0.0045 (7) 0.0115 (8) −0.0056 (8)

Geometric parameters (Å, °)

C1—C6 1.399 (3) C6—C8 1.508 (3)
C1—C2 1.403 (3) C7—N1 1.150 (3)
C1—C7 1.439 (3) C8—N2 1.472 (3)
C2—C3 1.382 (4) C8—H8A 0.9700
C2—H2A 0.9300 C8—H8B 0.9700
C3—C4 1.381 (4) C9—N5 1.323 (3)
C3—H3A 0.9300 C9—N4 1.324 (3)
C4—C5 1.380 (3) C9—H9A 0.9300
C4—H4A 0.9300 N2—N3 1.310 (2)
C5—C6 1.387 (3) N2—N5 1.324 (3)
C5—H5A 0.9300 N3—N4 1.321 (3)
C6—C1—C2 120.24 (19) C1—C6—C8 121.60 (17)
C6—C1—C7 120.39 (17) N1—C7—C1 179.5 (2)
C2—C1—C7 119.35 (19) N2—C8—C6 111.20 (14)
C3—C2—C1 119.4 (2) N2—C8—H8A 109.4
C3—C2—H2A 120.3 C6—C8—H8A 109.4
C1—C2—H2A 120.3 N2—C8—H8B 109.4
C4—C3—C2 120.3 (2) C6—C8—H8B 109.4
C4—C3—H3A 119.8 H8A—C8—H8B 108.0
C2—C3—H3A 119.8 N5—C9—N4 113.2 (2)
C5—C4—C3 120.3 (2) N5—C9—H9A 123.4
C5—C4—H4A 119.9 N4—C9—H9A 123.4
C3—C4—H4A 119.9 N3—N2—N5 113.55 (16)
C4—C5—C6 120.8 (2) N3—N2—C8 123.14 (17)
C4—C5—H5A 119.6 N5—N2—C8 123.26 (16)
C6—C5—H5A 119.6 N2—N3—N4 106.27 (18)
C5—C6—C1 118.86 (17) N3—N4—C9 105.73 (18)
C5—C6—C8 119.54 (18) C9—N5—N2 101.27 (16)
C6—C1—C2—C3 −0.1 (3) C5—C6—C8—N2 −89.3 (2)
C7—C1—C2—C3 178.34 (18) C1—C6—C8—N2 90.6 (2)
C1—C2—C3—C4 0.6 (3) C6—C8—N2—N3 99.7 (2)
C2—C3—C4—C5 −0.9 (4) C6—C8—N2—N5 −77.7 (2)
C3—C4—C5—C6 0.8 (3) N5—N2—N3—N4 −0.3 (2)
C4—C5—C6—C1 −0.2 (3) C8—N2—N3—N4 −177.94 (15)
C4—C5—C6—C8 179.64 (17) N2—N3—N4—C9 0.1 (2)
C2—C1—C6—C5 −0.1 (3) N5—C9—N4—N3 0.1 (3)
C7—C1—C6—C5 −178.51 (17) N4—C9—N5—N2 −0.3 (2)
C2—C1—C6—C8 −179.96 (16) N3—N2—N5—C9 0.38 (19)
C7—C1—C6—C8 1.6 (3) C8—N2—N5—C9 178.00 (14)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2054).

References

  1. Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, m1955.
  2. Huang, X.-H., Sheng, T.-L., Xiang, S.-C., Fu, R.-B., Hu, S.-M., Li, Y.-M. & Wu, X.-T. (2006). Inorg. Chem. Commun.9, 1304–1307.
  3. Hu, B., Xu, X.-B., Li, Y.-X. & Ye, H.-Y. (2007). Acta Cryst. E63, m2698.
  4. Rigaku (2005). CrystalClear Version 1.4.0. Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  6. Sheldrick, G. M. (1999). SHELXTL/PC Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807064434/gg2054sup1.cif

e-64-0o221-sup1.cif (14.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807064434/gg2054Isup2.hkl

e-64-0o221-Isup2.hkl (96.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES