Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 12;64(Pt 1):o231–o232. doi: 10.1107/S1600536807065270

Propane-1,3-diaminium–2-carboxy­pyridine-6-carboxyl­ate–pyridine-2,6-dicarboxylic acid–water (1/2/2/8)

Janet Soleimannejad a, Hossein Aghabozorg b,*, Elham Motyeian b, Mohammad Ghadermazi c, Jafar Attar Gharamaleki b, Harry Adams d
PMCID: PMC2915292  PMID: 21200799

Abstract

The title proton-transfer compound, C3H12N2 2+·2C7H4NO4 ·2C7H5NO4·8H2O or (pnH2)(pydcH)2.2(pydcH2)·8H2O, was obtained by the reaction of pyridine-2,6-dicarboxylic acid (pydcH2) and propane-1,3-diamine (pn) in aqueous solution. Both neutral and monoanionic forms of the diacid are observed in the crystal structure. The negative charge of two monoanions is balanced by the dicationic propane-1,3-diaminium species. In addition, considerable π–π stacking inter­actions between the aromatic rings of the (pydcH) and (pydcH2) fragments [with centroid–centroid distances of 3.5108 (11)–3.5949 (11) Å] are observed. The most important feature of this crystal structure is the presence of a large number of O—H⋯O, O—H⋯N, N—H⋯O, N—H⋯N, C—H⋯O and C—H⋯N hydrogen bonds, with DA ranging from 2.445 (2) to 3.485 (3) Å. These inter­actions as well as ion pairing and π–π stacking connect the various fragments into a supra­molecular structure.

Related literature

For related literature, see: Aghabozorg, Attar Gharamaleki, Ghadermazi, Ghasemikhah & Soleimannejad (2007); Aghabozorg, Attar Gharamaleki, Ghasemikhah, Ghadermazi & Soleimannejad, 2007; Aghabozorg, Daneshvar et al. (2007).graphic file with name e-64-0o231-scheme1.jpg

Experimental

Crystal data

  • C3H12N2 2+·2C7H4NO4 ·2C7H5NO4·8H2O

  • M r = 886.73

  • Monoclinic, Inline graphic

  • a = 13.5425 (2) Å

  • b = 13.5237 (2) Å

  • c = 21.7538 (3) Å

  • β = 99.914 (1)°

  • V = 3924.60 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 150 (2) K

  • 0.26 × 0.12 × 0.12 mm

Data collection

  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.967, T max = 0.985

  • 56174 measured reflections

  • 9031 independent reflections

  • 6702 reflections with I > 2σ(I)

  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.139

  • S = 1.02

  • 9031 reflections

  • 550 parameters

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807065270/bq2048sup1.cif

e-64-0o231-sup1.cif (31.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065270/bq2048Isup2.hkl

e-64-0o231-Isup2.hkl (337.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O19 0.95 1.94 2.830 (2) 154
O5—H5AA⋯O20 0.95 1.67 2.592 (2) 164
O7—H7A⋯O3 0.95 1.51 2.455 (2) 177
O7—H7A⋯O4 0.95 2.57 3.119 (2) 117
O9—H9A⋯O22 0.95 1.64 2.588 (2) 172
O11—H11A⋯O13i 0.95 1.50 2.445 (2) 177
O11—H11A⋯O14i 0.95 2.61 3.181 (2) 119
O16—H16A⋯O24 0.95 1.60 2.551 (2) 174
O17—H17A⋯O15 0.95 1.90 2.838 (2) 167
O17—H17A⋯N4 0.95 2.43 2.956 (2) 115
O17—H17B⋯O14 0.95 1.87 2.821 (2) 175
O18—H18B⋯O1 0.95 1.89 2.815 (2) 164
O18—H18A⋯O17ii 0.95 1.88 2.809 (2) 166
O19—H19B⋯N1 0.95 2.22 3.092 (2) 152
O19—H19A⋯O13i 0.95 2.34 3.174 (2) 146
O20—H20B⋯O12iii 0.95 1.87 2.793 (2) 164
O20—H20A⋯O22 0.95 1.95 2.875 (3) 165
O21—H21B⋯O10 0.95 1.89 2.834 (2) 170
O21—H21A⋯O19iii 0.95 1.85 2.784 (2) 166
O22—H22A⋯O21 0.95 1.88 2.818 (2) 168
O22—H22B⋯O17iv 0.95 1.81 2.742 (2) 167
O23—H23B⋯O6 0.95 1.85 2.749 (2) 157
O23—H23A⋯O12iii 0.95 1.96 2.899 (2) 170
O24—H24B⋯O18v 0.95 1.79 2.706 (2) 161
O24—H24A⋯O12vi 0.95 1.86 2.761 (2) 157
N5—H5A⋯N2 0.95 2.40 3.342 (3) 171
N5—H5A⋯O6 0.95 2.61 3.227 (2) 123
N5—H5B⋯O4 0.95 1.95 2.879 (2) 166
N5—H5C⋯O23vii 0.95 2.06 2.991 (3) 166
N6—H6A⋯O14i 0.95 2.01 2.938 (2) 164
N6—H6B⋯O21viii 0.95 1.90 2.849 (2) 174
N6—H6C⋯N3 0.95 2.17 3.070 (2) 158
C5—H5⋯O18iii 0.95 2.56 3.429 (3) 153
C10—H10⋯O1ix 0.95 2.50 3.335 (3) 147
C11—H11⋯O18ix 0.95 2.52 3.427 (3) 159
C19—H19⋯O15x 0.95 2.46 3.266 (3) 143
C25—H25⋯O24xi 0.95 2.56 3.485 (3) 165
C26—H26⋯O16xi 0.95 2.56 3.287 (3) 134
C31—H31A⋯N2 0.99 2.52 3.391 (3) 146
C31—H31B⋯O10 0.99 2.54 3.175 (3) 122

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic; (x) Inline graphic; (xi) Inline graphic.

Acknowledgments

Financial support from Ilam University and the Teacher Training University is gratefully acknowledged.

supplementary crystallographic information

Comment

Intermolecular interactions, such as hydrogen bonding, π-π stacking, ion pairing and donor-acceptor interactions, are famous for making aggregates of molecules. Hydrogen bonding has been described as the most important interaction in supramolecular chemistry. Dicarboxylic acids possess a good potential to be used as proton donors in the synthesis of proton transfer compounds. Among these diacids, pyridine-2,6-dicarboxylic acid has been used by our research group for preparing of such compounds. For example, (pydaH)(pydcH) in which pyridine-2,6-diamine (pyda) was used as a proton acceptor. The resulting compounds with some remaining sites as electron donors can coordinate to metallic ions (Aghabozorg, Attar Gharamaleki, Ghadermazi, Ghasemikhah & Soleimannejad, 2007; Aghabozorg, Attar Gharamaleki, Ghasemikhah, Ghadermazi & Soleimannejad, 2007; Aghabozorg, Daneshvar et al., 2007).

Here we report a new proton transfer compound obtained from (pydcH2) as a proton donor and propane-1,3-diamine (pn) as an acceptor. The molecular structure of the title compound is shown in Fig. 1. The intermolecular hydrogen bond distances are listed in Table 1.

The structure of this compound contains two neutral pydcH2 molecules, two monoanionic (pydcH)-, one (pnH2)2+ species and eight uncoordinated water molecules. The negative charge of two monoanions is neutralized by dicationic propane-1,3-diaminium fragments.

A considerable π-π stacking interactions between aromatic rings of (pydcH2) and (pydcH)- fragments with centroid-centroid distances of 3.5108 (11)–3.5949 (11) Å are observed in the prepared compound (Fig. 2). A remarkable feature in the crystal structure of compound (I) is the presence of a large number of O—H···O, O—H···N, N—H···O, N—H···N, C—H···O and C—H···N hydrogen bonds interactions ranging from 2.450 (2) to 3.488 (3) Å. The shortest hydrogen bond is O11—H11A···O13 (-x + 1, y + 1/2, -z + 1/2) with D···A = 2.450 (2) Å, a very strong interaction (Table 1). These extensive hydrogen bond interactions as well as ion pairing and π-π stacking connect the different components to form a three-dimensional supramolecular structure (Fig. 3).

Experimental

The reaction of pyridine-2,6-dicarboxylic acid (pydcH2) (330 mg, 2 mmol) with propane-1,3-diamine (pn) (76 mg, 1 mmol) in a 2:1 molar ratio in tetrahydrofuran (THF) led to the formation of a white precipitate which was filtered off and dried. The resulting powder was dissolved in water to give colorless crystals of the title compound after four weeks.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound (I), displacement ellipsoids are drawn at the 50% probability level. Water molecules are omitted for clarity.

Fig. 2.

Fig. 2.

π-π Stacking interactions between aromatic rings of (pydcH2) and (pydcH)- fragments with centroid-centroid distances of: X1A···.X1B, 3.5949 (11) Å (x, y, z); X1B···.X1C, 3.5191 (11) Å (1 - x, -1/2 + y, 1/2 - z); X1C···.X1D, 3.5789 (11) Å (1 - x, 1/2 + y, 1/2 - z); X1A···.X1D, 3.5108 (11) Å (x, 1 + y, z).

Fig. 3.

Fig. 3.

Unit-cell packing diagram of the compound (I). Hydrogen bonds are indicated by dashed lines.

Crystal data

C3H12N22+·2C7H4NO4·2C7H5NO4·8H2O F000 = 1864
Mr = 886.73 Dx = 1.501 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
a = 13.5425 (2) Å Cell parameters from 9156 reflections
b = 13.5237 (2) Å θ = 2.4–29.1º
c = 21.7538 (3) Å µ = 0.13 mm1
β = 99.914 (1)º T = 150 (2) K
V = 3924.60 (10) Å3 Block, colourless
Z = 4 0.26 × 0.12 × 0.12 mm

Data collection

Bruker SMART 1000 diffractometer 9031 independent reflections
Radiation source: fine-focus sealed tube 6702 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.054
Detector resolution: 100 pixels mm-1 θmax = 27.5º
T = 150(2) K θmin = 1.5º
ω scans h = −17→17
Absorption correction: multi-scan(SADABS; Bruker, 1998) k = −17→17
Tmin = 0.967, Tmax = 0.985 l = −28→28
56174 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H-atom parameters constrained
wR(F2) = 0.139   w = 1/[σ2(Fo2) + (0.0592P)2 + 3.5811P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
9031 reflections Δρmax = 0.84 e Å3
550 parameters Δρmin = −0.51 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.90840 (11) 0.77843 (12) 0.54180 (7) 0.0254 (3)
O2 0.74609 (11) 0.79981 (11) 0.51063 (7) 0.0249 (3)
H2A 0.6958 0.8087 0.4748 0.030*
O3 0.60302 (12) 0.87473 (13) 0.31596 (7) 0.0307 (4)
O4 0.68349 (11) 0.88557 (12) 0.23488 (7) 0.0262 (3)
O5 0.18211 (12) 0.78608 (13) −0.00659 (7) 0.0320 (4)
H5AA 0.2027 0.7723 −0.0453 0.038*
O6 0.33622 (12) 0.84668 (13) 0.02551 (7) 0.0292 (4)
O7 0.45325 (11) 0.89020 (13) 0.23505 (7) 0.0298 (4)
H7A 0.5096 0.8838 0.2675 0.036*
O8 0.35911 (12) 0.86950 (14) 0.30873 (7) 0.0333 (4)
O9 0.15292 (11) 0.52710 (12) −0.01050 (6) 0.0245 (3)
H9A 0.1799 0.5233 −0.0480 0.029*
O10 0.31288 (12) 0.55101 (13) 0.03474 (7) 0.0315 (4)
O11 0.39207 (11) 0.63847 (12) 0.24320 (6) 0.0262 (3)
H11A 0.4456 0.6339 0.2776 0.031*
O12 0.28767 (11) 0.61399 (11) 0.31033 (6) 0.0235 (3)
O13 0.46668 (11) 0.12691 (14) 0.17039 (7) 0.0322 (4)
O14 0.37185 (11) 0.11228 (12) 0.24412 (6) 0.0258 (3)
O15 0.02539 (11) 0.06135 (12) 0.19062 (7) 0.0255 (3)
O16 −0.04375 (11) 0.02480 (12) 0.09246 (6) 0.0248 (3)
H16A −0.1019 0.0061 0.1086 0.030*
O17 0.18876 (11) 0.09699 (12) 0.28868 (7) 0.0263 (3)
H17A 0.1416 0.0806 0.2525 0.032*
H17B 0.2490 0.1058 0.2726 0.032*
O18 0.85758 (12) 0.72397 (12) 0.65729 (7) 0.0276 (3)
H18B 0.8642 0.7497 0.6176 0.033*
H18A 0.8308 0.7822 0.6725 0.033*
O19 0.55978 (12) 0.80178 (13) 0.42843 (7) 0.0337 (4)
H19B 0.6221 0.8311 0.4244 0.040*
H19A 0.5239 0.7533 0.4019 0.040*
O20 0.20445 (14) 0.74513 (13) −0.11979 (8) 0.0385 (4)
H20B 0.2437 0.7866 −0.1413 0.046*
H20A 0.2206 0.6770 −0.1216 0.046*
O21 0.42936 (12) 0.54219 (13) −0.06159 (7) 0.0338 (4)
H21B 0.3970 0.5418 −0.0262 0.041*
H21A 0.4678 0.6011 −0.0607 0.041*
O22 0.22400 (13) 0.53350 (13) −0.11351 (7) 0.0348 (4)
H22A 0.2948 0.5373 −0.1021 0.042*
H22B 0.2014 0.4911 −0.1479 0.042*
O23 0.42837 (14) 0.89677 (16) −0.07328 (8) 0.0464 (5)
H23B 0.3852 0.8938 −0.0432 0.056*
H23A 0.3866 0.8866 −0.1125 0.056*
O24 −0.20133 (11) −0.03538 (11) 0.13049 (7) 0.0236 (3)
H24B −0.1884 −0.1000 0.1470 0.028*
H24A −0.2294 0.0031 0.1597 0.028*
C1 0.83900 (16) 0.79459 (15) 0.49983 (9) 0.0200 (4)
C2 0.85368 (15) 0.80829 (15) 0.43368 (9) 0.0187 (4)
C3 0.94700 (16) 0.79837 (15) 0.41643 (10) 0.0213 (4)
H3 1.0049 0.7844 0.4465 0.026*
C4 0.95318 (17) 0.80945 (16) 0.35423 (10) 0.0244 (5)
H4 1.0156 0.8019 0.3405 0.029*
C5 0.86744 (16) 0.83174 (15) 0.31202 (10) 0.0222 (4)
H5 0.8702 0.8397 0.2690 0.027*
C6 0.77715 (16) 0.84232 (15) 0.33360 (9) 0.0196 (4)
C7 0.68120 (16) 0.86929 (16) 0.29052 (9) 0.0223 (4)
C8 0.25328 (15) 0.82141 (16) 0.03516 (9) 0.0207 (4)
C9 0.22600 (15) 0.82952 (15) 0.09889 (9) 0.0179 (4)
C10 0.12850 (15) 0.81571 (15) 0.10843 (9) 0.0199 (4)
H10 0.0767 0.7994 0.0747 0.024*
C11 0.10811 (15) 0.82621 (15) 0.16848 (10) 0.0215 (4)
H11 0.0417 0.8191 0.1765 0.026*
C12 0.18632 (16) 0.84712 (15) 0.21610 (10) 0.0212 (4)
H12 0.1748 0.8543 0.2577 0.025*
C13 0.28225 (15) 0.85764 (15) 0.20248 (9) 0.0193 (4)
C14 0.36955 (16) 0.87368 (16) 0.25443 (10) 0.0228 (4)
C15 0.22408 (15) 0.54705 (16) 0.03722 (9) 0.0209 (4)
C16 0.18464 (15) 0.56360 (15) 0.09693 (9) 0.0177 (4)
C17 0.08312 (15) 0.55850 (15) 0.09973 (10) 0.0204 (4)
H17 0.0350 0.5465 0.0633 0.024*
C18 0.05401 (16) 0.57144 (16) 0.15715 (10) 0.0224 (4)
H18 −0.0148 0.5680 0.1608 0.027*
C19 0.12607 (15) 0.58934 (15) 0.20898 (9) 0.0197 (4)
H19 0.1079 0.5973 0.2490 0.024*
C20 0.22577 (15) 0.59546 (14) 0.20150 (9) 0.0172 (4)
C21 0.30780 (15) 0.61719 (15) 0.25620 (9) 0.0190 (4)
C22 0.38272 (15) 0.11248 (16) 0.18930 (9) 0.0208 (4)
C23 0.29575 (15) 0.09393 (14) 0.13742 (9) 0.0178 (4)
C24 0.30923 (15) 0.08566 (15) 0.07564 (9) 0.0192 (4)
H24 0.3738 0.0925 0.0647 0.023*
C25 0.22567 (16) 0.06715 (15) 0.03039 (9) 0.0201 (4)
H25 0.2320 0.0614 −0.0123 0.024*
C26 0.13305 (16) 0.05727 (15) 0.04837 (9) 0.0197 (4)
H26 0.0746 0.0452 0.0183 0.024*
C27 0.12751 (15) 0.06546 (14) 0.11150 (9) 0.0173 (4)
C28 0.03140 (15) 0.05113 (15) 0.13594 (9) 0.0193 (4)
C29 0.57849 (17) 0.82728 (18) 0.08483 (10) 0.0278 (5)
H29A 0.6472 0.8472 0.0803 0.033*
H29B 0.5371 0.8245 0.0427 0.033*
C30 0.58164 (16) 0.72587 (18) 0.11447 (10) 0.0266 (5)
H30A 0.6195 0.7297 0.1576 0.032*
H30B 0.6176 0.6798 0.0907 0.032*
C31 0.47782 (16) 0.68576 (17) 0.11606 (10) 0.0255 (5)
H31A 0.4435 0.7295 0.1422 0.031*
H31B 0.4385 0.6861 0.0733 0.031*
N1 0.76996 (13) 0.82962 (13) 0.39359 (8) 0.0192 (4)
N2 0.30298 (13) 0.85093 (12) 0.14479 (8) 0.0185 (3)
N3 0.25553 (12) 0.58254 (12) 0.14653 (7) 0.0172 (3)
N4 0.20715 (12) 0.08387 (12) 0.15546 (7) 0.0172 (3)
N5 0.53588 (15) 0.90263 (15) 0.12309 (8) 0.0285 (4)
H5A 0.4682 0.8858 0.1245 0.034*
H5B 0.5770 0.9026 0.1631 0.034*
H5C 0.5359 0.9684 0.1078 0.034*
N6 0.48067 (13) 0.58346 (14) 0.14140 (8) 0.0230 (4)
H6A 0.5210 0.5842 0.1817 0.028*
H6B 0.5084 0.5374 0.1161 0.028*
H6C 0.4155 0.5676 0.1490 0.028*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0257 (8) 0.0309 (9) 0.0189 (7) 0.0012 (6) 0.0019 (6) 0.0031 (6)
O2 0.0228 (8) 0.0324 (9) 0.0200 (7) 0.0025 (6) 0.0051 (6) 0.0006 (6)
O3 0.0221 (8) 0.0496 (11) 0.0201 (8) −0.0014 (7) 0.0027 (6) −0.0003 (7)
O4 0.0266 (8) 0.0358 (9) 0.0157 (7) −0.0062 (7) 0.0017 (6) 0.0001 (6)
O5 0.0288 (9) 0.0478 (11) 0.0183 (8) −0.0069 (7) 0.0008 (6) −0.0078 (7)
O6 0.0266 (8) 0.0433 (10) 0.0188 (7) −0.0046 (7) 0.0074 (6) −0.0021 (7)
O7 0.0195 (8) 0.0508 (11) 0.0184 (7) −0.0055 (7) 0.0007 (6) −0.0019 (7)
O8 0.0287 (9) 0.0554 (11) 0.0162 (8) 0.0009 (8) 0.0048 (6) −0.0034 (7)
O9 0.0243 (8) 0.0328 (9) 0.0156 (7) −0.0044 (6) 0.0007 (6) −0.0031 (6)
O10 0.0249 (8) 0.0493 (11) 0.0212 (8) −0.0053 (7) 0.0066 (6) −0.0076 (7)
O11 0.0165 (7) 0.0465 (10) 0.0151 (7) −0.0009 (7) 0.0014 (6) −0.0020 (7)
O12 0.0285 (8) 0.0276 (8) 0.0153 (7) −0.0007 (6) 0.0066 (6) −0.0005 (6)
O13 0.0181 (8) 0.0608 (12) 0.0173 (7) −0.0034 (7) 0.0022 (6) 0.0041 (7)
O14 0.0211 (8) 0.0402 (9) 0.0157 (7) −0.0010 (7) 0.0022 (6) 0.0008 (6)
O15 0.0225 (8) 0.0363 (9) 0.0187 (7) −0.0022 (6) 0.0065 (6) −0.0048 (6)
O16 0.0193 (7) 0.0366 (9) 0.0186 (7) −0.0064 (6) 0.0035 (6) −0.0035 (6)
O17 0.0251 (8) 0.0379 (9) 0.0163 (7) −0.0009 (7) 0.0050 (6) −0.0014 (6)
O18 0.0338 (9) 0.0276 (8) 0.0234 (8) 0.0022 (7) 0.0107 (7) 0.0040 (6)
O19 0.0290 (9) 0.0442 (10) 0.0285 (9) 0.0022 (7) 0.0061 (7) −0.0040 (7)
O20 0.0527 (11) 0.0310 (9) 0.0367 (10) −0.0008 (8) 0.0213 (8) 0.0039 (7)
O21 0.0350 (9) 0.0400 (10) 0.0301 (9) −0.0047 (8) 0.0156 (7) −0.0063 (7)
O22 0.0425 (10) 0.0408 (10) 0.0223 (8) −0.0057 (8) 0.0087 (7) −0.0043 (7)
O23 0.0338 (10) 0.0815 (15) 0.0254 (9) 0.0036 (10) 0.0095 (7) 0.0090 (9)
O24 0.0228 (8) 0.0285 (8) 0.0205 (7) −0.0024 (6) 0.0060 (6) −0.0031 (6)
C1 0.0236 (11) 0.0171 (10) 0.0190 (10) −0.0004 (8) 0.0035 (8) 0.0001 (8)
C2 0.0215 (10) 0.0160 (10) 0.0188 (10) −0.0015 (8) 0.0043 (8) −0.0009 (8)
C3 0.0209 (10) 0.0189 (10) 0.0237 (10) 0.0004 (8) 0.0027 (8) 0.0010 (8)
C4 0.0252 (11) 0.0234 (11) 0.0269 (11) 0.0000 (9) 0.0104 (9) 0.0010 (9)
C5 0.0275 (11) 0.0213 (11) 0.0192 (10) −0.0028 (8) 0.0075 (8) −0.0014 (8)
C6 0.0258 (11) 0.0158 (10) 0.0169 (9) −0.0039 (8) 0.0033 (8) −0.0023 (8)
C7 0.0236 (11) 0.0239 (11) 0.0188 (10) −0.0064 (8) 0.0019 (8) −0.0028 (8)
C8 0.0200 (10) 0.0221 (10) 0.0195 (10) 0.0009 (8) 0.0020 (8) 0.0004 (8)
C9 0.0208 (10) 0.0155 (9) 0.0176 (9) 0.0003 (8) 0.0037 (8) 0.0009 (8)
C10 0.0208 (10) 0.0174 (10) 0.0205 (10) −0.0015 (8) 0.0002 (8) 0.0033 (8)
C11 0.0177 (10) 0.0205 (10) 0.0275 (11) 0.0004 (8) 0.0072 (8) 0.0035 (8)
C12 0.0244 (11) 0.0208 (10) 0.0195 (10) 0.0020 (8) 0.0073 (8) 0.0010 (8)
C13 0.0218 (10) 0.0183 (10) 0.0180 (10) −0.0006 (8) 0.0034 (8) 0.0001 (8)
C14 0.0217 (11) 0.0268 (11) 0.0202 (10) 0.0008 (9) 0.0042 (8) −0.0024 (8)
C15 0.0222 (11) 0.0224 (10) 0.0180 (10) −0.0022 (8) 0.0030 (8) −0.0009 (8)
C16 0.0190 (10) 0.0168 (10) 0.0172 (9) 0.0004 (8) 0.0030 (7) 0.0012 (8)
C17 0.0197 (10) 0.0174 (10) 0.0226 (10) −0.0009 (8) −0.0004 (8) 0.0002 (8)
C18 0.0177 (10) 0.0219 (11) 0.0288 (11) 0.0006 (8) 0.0073 (8) 0.0011 (9)
C19 0.0206 (10) 0.0192 (10) 0.0211 (10) 0.0010 (8) 0.0083 (8) 0.0001 (8)
C20 0.0198 (10) 0.0161 (10) 0.0165 (9) 0.0021 (7) 0.0051 (8) 0.0015 (7)
C21 0.0222 (10) 0.0188 (10) 0.0166 (9) 0.0027 (8) 0.0053 (8) −0.0003 (8)
C22 0.0184 (10) 0.0261 (11) 0.0176 (10) 0.0006 (8) 0.0023 (8) 0.0032 (8)
C23 0.0198 (10) 0.0162 (10) 0.0171 (9) 0.0002 (8) 0.0023 (8) 0.0009 (8)
C24 0.0210 (10) 0.0188 (10) 0.0188 (10) 0.0000 (8) 0.0059 (8) 0.0002 (8)
C25 0.0272 (11) 0.0190 (10) 0.0146 (9) −0.0025 (8) 0.0049 (8) −0.0005 (8)
C26 0.0222 (10) 0.0186 (10) 0.0175 (9) −0.0028 (8) 0.0014 (8) −0.0008 (8)
C27 0.0192 (10) 0.0149 (9) 0.0179 (9) 0.0002 (7) 0.0036 (8) 0.0010 (7)
C28 0.0219 (10) 0.0183 (10) 0.0177 (10) 0.0014 (8) 0.0036 (8) −0.0002 (8)
C29 0.0225 (11) 0.0417 (14) 0.0202 (10) −0.0082 (10) 0.0064 (9) −0.0055 (10)
C30 0.0169 (10) 0.0398 (13) 0.0235 (11) −0.0014 (9) 0.0046 (8) −0.0042 (10)
C31 0.0187 (10) 0.0327 (12) 0.0249 (11) 0.0005 (9) 0.0033 (8) 0.0008 (9)
N1 0.0226 (9) 0.0185 (9) 0.0168 (8) −0.0022 (7) 0.0036 (7) −0.0006 (7)
N2 0.0205 (9) 0.0185 (8) 0.0171 (8) 0.0006 (7) 0.0043 (7) 0.0010 (7)
N3 0.0188 (8) 0.0176 (8) 0.0160 (8) −0.0001 (7) 0.0053 (6) 0.0001 (7)
N4 0.0183 (8) 0.0179 (8) 0.0153 (8) 0.0010 (6) 0.0028 (6) 0.0002 (6)
N5 0.0297 (10) 0.0355 (11) 0.0199 (9) −0.0053 (8) 0.0034 (8) −0.0007 (8)
N6 0.0186 (9) 0.0329 (10) 0.0181 (8) 0.0010 (7) 0.0052 (7) −0.0035 (7)

Geometric parameters (Å, °)

O1—C1 1.212 (3) C8—C9 1.499 (3)
O2—C1 1.321 (2) C9—N2 1.345 (3)
O2—H2A 0.9499 C9—C10 1.384 (3)
O3—C7 1.278 (3) C10—C11 1.388 (3)
O4—C7 1.236 (2) C10—H10 0.9500
O5—C8 1.296 (3) C11—C12 1.377 (3)
O5—H5AA 0.9501 C11—H11 0.9500
O6—C8 1.226 (3) C12—C13 1.389 (3)
O7—C14 1.295 (3) C12—H12 0.9500
O7—H7A 0.9501 C13—N2 1.335 (3)
O8—C14 1.215 (3) C13—C14 1.504 (3)
O9—C15 1.317 (2) C15—C16 1.504 (3)
O9—H9A 0.9499 C16—N3 1.340 (3)
O10—C15 1.214 (3) C16—C17 1.388 (3)
O11—C21 1.255 (2) C17—C18 1.384 (3)
O11—H11A 0.9499 C17—H17 0.9500
O12—C21 1.254 (2) C18—C19 1.380 (3)
O13—C22 1.289 (2) C18—H18 0.9500
O14—C22 1.227 (2) C19—C20 1.390 (3)
O15—C28 1.214 (2) C19—H19 0.9500
O16—C28 1.314 (2) C20—N3 1.338 (2)
O16—H16A 0.9500 C20—C21 1.510 (3)
O17—H17A 0.9500 C22—C23 1.505 (3)
O17—H17B 0.9499 C23—N4 1.332 (3)
O18—H18B 0.9501 C23—C24 1.392 (3)
O18—H18A 0.9499 C24—C25 1.389 (3)
O19—H19B 0.9501 C24—H24 0.9500
O19—H19A 0.9500 C25—C26 1.383 (3)
O20—H20B 0.9502 C25—H25 0.9500
O20—H20A 0.9501 C26—C27 1.393 (3)
O21—H21B 0.9500 C26—H26 0.9500
O21—H21A 0.9500 C27—N4 1.336 (3)
O22—H22A 0.9500 C27—C28 1.501 (3)
O22—H22B 0.9500 C29—N5 1.493 (3)
O23—H23B 0.9500 C29—C30 1.513 (3)
O23—H23A 0.9499 C29—H29A 0.9900
O24—H24B 0.9500 C29—H29B 0.9900
O24—H24A 0.9501 C30—C31 1.513 (3)
C1—C2 1.498 (3) C30—H30A 0.9900
C2—N1 1.337 (3) C30—H30B 0.9900
C2—C3 1.385 (3) C31—N6 1.487 (3)
C3—C4 1.378 (3) C31—H31A 0.9900
C3—H3 0.9500 C31—H31B 0.9900
C4—C5 1.384 (3) N5—H5A 0.9500
C4—H4 0.9500 N5—H5B 0.9500
C5—C6 1.391 (3) N5—H5C 0.9500
C5—H5 0.9500 N6—H6A 0.9502
C6—N1 1.336 (3) N6—H6B 0.9499
C6—C7 1.510 (3) N6—H6C 0.9500
C1—O2—H2A 115.5 C19—C18—H18 120.4
C8—O5—H5AA 113.4 C17—C18—H18 120.4
C14—O7—H7A 112.3 C18—C19—C20 118.65 (18)
C15—O9—H9A 110.5 C18—C19—H19 120.7
C21—O11—H11A 114.1 C20—C19—H19 120.7
C28—O16—H16A 113.3 N3—C20—C19 123.04 (18)
H17A—O17—H17B 102.8 N3—C20—C21 115.83 (17)
H18B—O18—H18A 96.6 C19—C20—C21 121.13 (17)
H19B—O19—H19A 127.0 O12—C21—O11 124.91 (19)
H20B—O20—H20A 113.5 O12—C21—C20 118.92 (18)
H21B—O21—H21A 108.4 O11—C21—C20 116.17 (17)
H22A—O22—H22B 114.4 O14—C22—O13 124.81 (19)
H23B—O23—H23A 105.7 O14—C22—C23 121.27 (18)
H24B—O24—H24A 108.7 O13—C22—C23 113.92 (17)
O1—C1—O2 120.96 (18) N4—C23—C24 123.43 (18)
O1—C1—C2 122.15 (19) N4—C23—C22 115.11 (17)
O2—C1—C2 116.88 (17) C24—C23—C22 121.44 (18)
N1—C2—C3 123.70 (18) C25—C24—C23 118.21 (18)
N1—C2—C1 114.54 (17) C25—C24—H24 120.9
C3—C2—C1 121.76 (18) C23—C24—H24 120.9
C4—C3—C2 117.9 (2) C26—C25—C24 119.01 (18)
C4—C3—H3 121.1 C26—C25—H25 120.5
C2—C3—H3 121.1 C24—C25—H25 120.5
C3—C4—C5 119.3 (2) C25—C26—C27 118.46 (19)
C3—C4—H4 120.4 C25—C26—H26 120.8
C5—C4—H4 120.4 C27—C26—H26 120.8
C4—C5—C6 118.98 (19) N4—C27—C26 123.16 (18)
C4—C5—H5 120.5 N4—C27—C28 114.39 (17)
C6—C5—H5 120.5 C26—C27—C28 122.43 (18)
N1—C6—C5 122.19 (19) O15—C28—O16 124.19 (19)
N1—C6—C7 115.94 (18) O15—C28—C27 122.74 (18)
C5—C6—C7 121.87 (18) O16—C28—C27 113.06 (17)
O4—C7—O3 125.2 (2) N5—C29—C30 111.50 (17)
O4—C7—C6 119.12 (19) N5—C29—H29A 109.3
O3—C7—C6 115.69 (18) C30—C29—H29A 109.3
O6—C8—O5 125.11 (19) N5—C29—H29B 109.3
O6—C8—C9 121.12 (18) C30—C29—H29B 109.3
O5—C8—C9 113.76 (18) H29A—C29—H29B 108.0
N2—C9—C10 123.73 (18) C29—C30—C31 112.13 (19)
N2—C9—C8 114.79 (17) C29—C30—H30A 109.2
C10—C9—C8 121.48 (18) C31—C30—H30A 109.2
C9—C10—C11 118.47 (19) C29—C30—H30B 109.2
C9—C10—H10 120.8 C31—C30—H30B 109.2
C11—C10—H10 120.8 H30A—C30—H30B 107.9
C12—C11—C10 118.49 (19) N6—C31—C30 112.15 (18)
C12—C11—H11 120.8 N6—C31—H31A 109.2
C10—C11—H11 120.8 C30—C31—H31A 109.2
C11—C12—C13 119.14 (19) N6—C31—H31B 109.2
C11—C12—H12 120.4 C30—C31—H31B 109.2
C13—C12—H12 120.4 H31A—C31—H31B 107.9
N2—C13—C12 123.32 (19) C6—N1—C2 117.92 (18)
N2—C13—C14 116.79 (18) C13—N2—C9 116.79 (17)
C12—C13—C14 119.84 (18) C20—N3—C16 117.42 (17)
O8—C14—O7 125.4 (2) C23—N4—C27 117.72 (16)
O8—C14—C13 121.05 (19) C29—N5—H5A 108.8
O7—C14—C13 113.53 (17) C29—N5—H5B 106.8
O10—C15—O9 124.74 (19) H5A—N5—H5B 112.7
O10—C15—C16 122.26 (18) C29—N5—H5C 114.9
O9—C15—C16 113.00 (17) H5A—N5—H5C 107.1
N3—C16—C17 123.50 (18) H5B—N5—H5C 106.6
N3—C16—C15 114.34 (17) C31—N6—H6A 107.8
C17—C16—C15 122.16 (18) C31—N6—H6B 112.5
C18—C17—C16 118.13 (19) H6A—N6—H6B 108.7
C18—C17—H17 120.9 C31—N6—H6C 108.0
C16—C17—H17 120.9 H6A—N6—H6C 104.2
C19—C18—C17 119.23 (19) H6B—N6—H6C 115.1
O1—C1—C2—N1 −177.34 (19) C18—C19—C20—C21 178.60 (19)
O2—C1—C2—N1 3.4 (3) N3—C20—C21—O12 −168.41 (18)
O1—C1—C2—C3 3.2 (3) C19—C20—C21—O12 11.4 (3)
O2—C1—C2—C3 −176.03 (18) N3—C20—C21—O11 12.3 (3)
N1—C2—C3—C4 −1.2 (3) C19—C20—C21—O11 −167.82 (19)
C1—C2—C3—C4 178.17 (19) O14—C22—C23—N4 4.0 (3)
C2—C3—C4—C5 1.3 (3) O13—C22—C23—N4 −176.68 (19)
C3—C4—C5—C6 0.0 (3) O14—C22—C23—C24 −174.4 (2)
C4—C5—C6—N1 −1.5 (3) O13—C22—C23—C24 4.9 (3)
C4—C5—C6—C7 178.33 (19) N4—C23—C24—C25 0.8 (3)
N1—C6—C7—O4 177.41 (19) C22—C23—C24—C25 179.11 (19)
C5—C6—C7—O4 −2.4 (3) C23—C24—C25—C26 −0.3 (3)
N1—C6—C7—O3 −1.6 (3) C24—C25—C26—C27 −0.6 (3)
C5—C6—C7—O3 178.6 (2) C25—C26—C27—N4 1.0 (3)
O6—C8—C9—N2 −10.0 (3) C25—C26—C27—C28 −177.05 (18)
O5—C8—C9—N2 169.95 (18) N4—C27—C28—O15 4.3 (3)
O6—C8—C9—C10 170.0 (2) C26—C27—C28—O15 −177.5 (2)
O5—C8—C9—C10 −10.1 (3) N4—C27—C28—O16 −174.48 (17)
N2—C9—C10—C11 1.2 (3) C26—C27—C28—O16 3.7 (3)
C8—C9—C10—C11 −178.76 (19) N5—C29—C30—C31 65.6 (2)
C9—C10—C11—C12 −1.8 (3) C29—C30—C31—N6 176.28 (17)
C10—C11—C12—C13 0.4 (3) C5—C6—N1—C2 1.6 (3)
C11—C12—C13—N2 1.7 (3) C7—C6—N1—C2 −178.23 (18)
C11—C12—C13—C14 −175.90 (19) C3—C2—N1—C6 −0.2 (3)
N2—C13—C14—O8 −171.6 (2) C1—C2—N1—C6 −179.62 (17)
C12—C13—C14—O8 6.2 (3) C12—C13—N2—C9 −2.3 (3)
N2—C13—C14—O7 7.5 (3) C14—C13—N2—C9 175.36 (18)
C12—C13—C14—O7 −174.77 (19) C10—C9—N2—C13 0.8 (3)
O10—C15—C16—N3 −0.2 (3) C8—C9—N2—C13 −179.19 (18)
O9—C15—C16—N3 179.01 (17) C19—C20—N3—C16 0.5 (3)
O10—C15—C16—C17 −179.6 (2) C21—C20—N3—C16 −179.69 (17)
O9—C15—C16—C17 −0.4 (3) C17—C16—N3—C20 1.1 (3)
N3—C16—C17—C18 −1.5 (3) C15—C16—N3—C20 −178.31 (17)
C15—C16—C17—C18 177.83 (19) C24—C23—N4—C27 −0.4 (3)
C16—C17—C18—C19 0.4 (3) C22—C23—N4—C27 −178.80 (17)
C17—C18—C19—C20 1.1 (3) C26—C27—N4—C23 −0.5 (3)
C18—C19—C20—N3 −1.6 (3) C28—C27—N4—C23 177.68 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2A···O19 0.95 1.94 2.830 (2) 154
O5—H5AA···O20 0.95 1.67 2.592 (2) 164
O7—H7A···O3 0.95 1.51 2.455 (2) 177
O7—H7A···O4 0.95 2.57 3.119 (2) 117
O9—H9A···O22 0.95 1.64 2.588 (2) 172
O11—H11A···O13i 0.95 1.50 2.445 (2) 177
O11—H11A···O14i 0.95 2.61 3.181 (2) 119
O16—H16A···O24 0.95 1.60 2.551 (2) 174
O17—H17A···O15 0.95 1.90 2.838 (2) 167
O17—H17A···N4 0.95 2.43 2.956 (2) 115
O17—H17B···O14 0.95 1.87 2.821 (2) 175
O18—H18B···O1 0.95 1.89 2.815 (2) 164
O18—H18A···O17ii 0.95 1.88 2.809 (2) 166
O19—H19B···N1 0.95 2.22 3.092 (2) 152
O19—H19A···O13i 0.95 2.34 3.174 (2) 146
O20—H20B···O12iii 0.95 1.87 2.793 (2) 164
O20—H20A···O22 0.95 1.95 2.875 (3) 165
O21—H21B···O10 0.95 1.89 2.834 (2) 170
O21—H21A···O19iii 0.95 1.85 2.784 (2) 166
O22—H22A···O21 0.95 1.88 2.818 (2) 168
O22—H22B···O17iv 0.95 1.81 2.742 (2) 167
O23—H23B···O6 0.95 1.85 2.749 (2) 157
O23—H23A···O12iii 0.95 1.96 2.899 (2) 170
O24—H24B···O18v 0.95 1.79 2.706 (2) 161
O24—H24A···O12vi 0.95 1.86 2.761 (2) 157
N5—H5A···N2 0.95 2.40 3.342 (3) 171
N5—H5A···O6 0.95 2.61 3.227 (2) 123
N5—H5B···O4 0.95 1.95 2.879 (2) 166
N5—H5C···O23vii 0.95 2.06 2.991 (3) 166
N6—H6A···O14i 0.95 2.01 2.938 (2) 164
N6—H6B···O21viii 0.95 1.90 2.849 (2) 174
N6—H6C···N3 0.95 2.17 3.070 (2) 158
C5—H5···O18iii 0.95 2.56 3.429 (3) 153
C10—H10···O1ix 0.95 2.50 3.335 (3) 147
C11—H11···O18ix 0.95 2.52 3.427 (3) 159
C19—H19···O15x 0.95 2.46 3.266 (3) 143
C25—H25···O24xi 0.95 2.56 3.485 (3) 165
C26—H26···O16xi 0.95 2.56 3.287 (3) 134
C31—H31A···N2 0.99 2.52 3.391 (3) 146
C31—H31B···O10 0.99 2.54 3.175 (3) 122

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x, −y+3/2, z−1/2; (iv) x, −y+1/2, z−1/2; (v) x−1, −y+1/2, z−1/2; (vi) −x, y−1/2, −z+1/2; (vii) −x+1, −y+2, −z; (viii) −x+1, −y+1, −z; (ix) x−1, −y+3/2, z−1/2; (x) −x, y+1/2, −z+1/2; (xi) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2048).

References

  1. Aghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007). Acta Cryst. E63, m1803–m1804.
  2. Aghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007). Acta Cryst. E63, m1710–m1711.
  3. Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469. [DOI] [PMC free article] [PubMed]
  4. Bruker (1998). SMART (Version 5.0), SAINT (Version 4.0) and SADABS (Version 2.0). Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2005). SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807065270/bq2048sup1.cif

e-64-0o231-sup1.cif (31.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065270/bq2048Isup2.hkl

e-64-0o231-Isup2.hkl (337.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES