Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 12;64(Pt 1):o234. doi: 10.1107/S1600536807064550

2,2-Dichloro-N-(2,3-dimethyl­phen­yl)acetamide

B Thimme Gowda a,*, Ingrid Svoboda b, Sabine Foro b, Helmut Paulus b, Hartmut Fuess b
PMCID: PMC2915294  PMID: 21200801

Abstract

The conformation of the N—H bond in the title compound, C10H11Cl2NO, is syn to both the 2- and 3-methyl substituents in the aromatic ring, similar to that of the 2-chloro and 3-chloro substituents in 2,2-dichloro-N-(2,3-dichloro­phen­yl)acetamide and the 2-methyl substituent in 2,2-dichloro-N-(2-methyl­phen­yl)acetamide, but in contrast to the anti conformation observed with respect to the 3-methyl substituent in 2,2-dichloro-N-(3-methyl­phen­yl)acetamide. The bond parameters in the title compound are similar to those in 2,2-dichloro-N-phenyl­acetamide and other acetanilides. The mol­ecules of the title compound are linked into chains through N—H⋯O and C—H⋯O hydrogen bonding.

Related literature

For related literature, see: Gowda et al. (2006); Gowda, Foro & Fuess (2007); Gowda, Kozisek et al. (2007); Shilpa & Gowda (2007).graphic file with name e-64-0o234-scheme1.jpg

Experimental

Crystal data

  • C10H11Cl2NO

  • M r = 232.10

  • Monoclinic, Inline graphic

  • a = 21.516 (8) Å

  • b = 4.678 (2) Å

  • c = 22.179 (9) Å

  • β = 91.54 (2)°

  • V = 2231.6 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 297 (2) K

  • 0.60 × 0.16 × 0.12 mm

Data collection

  • Stoe STADI4 4-circle diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.918, T max = 0.942

  • 3934 measured reflections

  • 1969 independent reflections

  • 1595 reflections with I > 2σ(I)

  • R int = 0.016

  • 3 standard reflections frequency: 180 min intensity decay: 6%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.102

  • S = 1.07

  • 1969 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: STADI4 (Stoe & Cie, 1987); cell refinement: STADI4; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807064550/dn2288sup1.cif

e-64-0o234-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807064550/dn2288Isup2.hkl

e-64-0o234-Isup2.hkl (96.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6N⋯O5i 0.78 (3) 2.07 (3) 2.830 (2) 165 (2)
C3—H3⋯O5i 0.98 2.31 3.100 (3) 137

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, the structure of 2,2-Dichloro-N- (2,3-dimethylphenyl)acetamide (23DMPDCA) has been determined as part of a study of the substituent effects on the structures of N-aromatic amides (Gowda et al., 2006; Gowda, Foro & Fuess, 2007; Gowda, Kozisek et al., 2007). The conformation of the N—H bond in 23DMPDCA is syn to both the 2- and 3-methyl substituents in the aromatic ring (Fig. 1), similar to that of 2-chloro and 3-chloro substi tuents in the 2,2-dichloro-N-(2,3-dichlorophenyl)acetamide (23DCPDCA) (Gowda, Foro & Fuess, 2007) and 2-methyl substituent in 2,2-Dichloro-N- (2-methylphenyl)acetamide (2MPDCA)(Gowda et al., 2006), but in contrast to the anti conformation observed with respect to the 3-methyl substituent in the 2,2-Dichloro-N-(3-methylphenyl)acetamide(3MPDCA)(Gowda et al., 2006). The bond parameters in 23DMPDCA are similar to those in 2,2-dichloro-N- (phenyl)acetamide, 2MPDCA, 3MPDCA (Gowda et al., 2006), 23DCPDCA (Gowda, Foro & Fuess, 2007) and other acetanilides. The molecules in 23DMPDcA are linked into infinite chains through simultaneous N—H···O and C—H···O hydrogen bonding (Table 1 and Fig.2).

Experimental

The title compound was prepared according to the literature method (Shilpa & Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa & Gowda, 2007). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å (CH aromatic) or 0.96 Å (CH3) or 0.98 Å (CHCl2) and N—H = 0.86 Å with Uiso(H) = 1.2 Ueq(CH or NH) and Uiso(H) = 1.4 Ueq(CH3).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Partial packing view of the title compound with hydrogen bonding shown as dashed lines.[Symmetry code: (i) x, 1 + x, y]

Crystal data

C10H11Cl2NO F000 = 960
Mr = 232.10 Dx = 1.382 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71069 Å
Hall symbol: -C 2yc Cell parameters from 44 reflections
a = 21.516 (8) Å θ = 18.0–20.6º
b = 4.678 (2) Å µ = 0.55 mm1
c = 22.179 (9) Å T = 297 (2) K
β = 91.54 (2)º Needle, light yellow
V = 2231.6 (16) Å3 0.60 × 0.16 × 0.12 mm
Z = 8

Data collection

Stoe STADI4 4-circle diffractometer Rint = 0.016
Radiation source: fine-focus sealed tube θmax = 25.0º
Monochromator: graphite θmin = 1.8º
T = 297(2) K h = −25→25
Profile fitted scans 2θ/ω=1/1 k = 0→5
Absorption correction: ψ scan(North et al., 1968) l = 0→26
Tmin = 0.918, Tmax = 0.942 3 standard reflections
3934 measured reflections every 180 min
1969 independent reflections intensity decay: 6%
1595 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102   w = 1/[σ2(Fo2) + (0.0405P)2 + 2.0597P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
1969 reflections Δρmax = 0.24 e Å3
133 parameters Δρmin = −0.28 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.45285 (3) 0.09175 (16) 0.44140 (4) 0.0836 (3)
Cl2 0.41708 (4) 0.3272 (2) 0.32575 (3) 0.0945 (3)
C3 0.39612 (9) 0.2882 (4) 0.40110 (10) 0.0504 (5)
H3 0.3923 0.4778 0.4194 0.061*
C4 0.33333 (10) 0.1369 (4) 0.40248 (11) 0.0510 (5)
O5 0.33048 (8) −0.1222 (3) 0.40441 (12) 0.0912 (7)
N6 0.28502 (8) 0.3103 (4) 0.39976 (9) 0.0462 (4)
H6N 0.2915 (11) 0.475 (6) 0.3986 (10) 0.057 (7)*
C7 0.22132 (9) 0.2200 (4) 0.39827 (9) 0.0435 (5)
C8 0.18107 (9) 0.3255 (4) 0.35353 (9) 0.0451 (5)
C9 0.11839 (10) 0.2396 (5) 0.35446 (10) 0.0541 (5)
C10 0.09995 (11) 0.0506 (6) 0.39835 (12) 0.0671 (7)
H10 0.0586 −0.0069 0.3987 0.081*
C11 0.14076 (12) −0.0548 (5) 0.44137 (12) 0.0689 (7)
H11 0.1272 −0.1841 0.4700 0.083*
C12 0.20191 (11) 0.0313 (5) 0.44203 (10) 0.0563 (6)
H12 0.2298 −0.0362 0.4714 0.068*
C13 0.20344 (11) 0.5237 (5) 0.30556 (11) 0.0597 (6)
H13A 0.1936 0.7173 0.3161 0.084*
H13B 0.1834 0.4764 0.2677 0.084*
H13C 0.2476 0.5044 0.3022 0.084*
C14 0.07173 (12) 0.3510 (7) 0.30821 (13) 0.0790 (8)
H14A 0.0839 0.2942 0.2686 0.111*
H14B 0.0702 0.5558 0.3104 0.111*
H14C 0.0314 0.2737 0.3161 0.111*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0547 (4) 0.0786 (5) 0.1163 (6) 0.0004 (3) −0.0202 (3) 0.0313 (4)
Cl2 0.0850 (5) 0.1212 (7) 0.0773 (5) −0.0172 (5) 0.0046 (4) 0.0159 (4)
C3 0.0465 (11) 0.0325 (10) 0.0719 (14) −0.0007 (9) −0.0041 (10) 0.0007 (9)
C4 0.0486 (12) 0.0282 (10) 0.0759 (15) −0.0035 (9) −0.0056 (10) 0.0001 (9)
O5 0.0567 (10) 0.0243 (8) 0.192 (2) −0.0026 (7) −0.0065 (12) 0.0013 (10)
N6 0.0436 (9) 0.0232 (8) 0.0715 (12) −0.0041 (7) −0.0038 (8) 0.0022 (8)
C7 0.0442 (11) 0.0290 (9) 0.0572 (12) −0.0043 (8) 0.0015 (9) −0.0034 (8)
C8 0.0485 (11) 0.0329 (9) 0.0539 (11) −0.0001 (8) 0.0032 (9) −0.0075 (9)
C9 0.0443 (11) 0.0513 (12) 0.0665 (14) −0.0024 (10) −0.0004 (10) −0.0148 (11)
C10 0.0506 (13) 0.0647 (15) 0.0865 (18) −0.0170 (12) 0.0117 (12) −0.0138 (14)
C11 0.0752 (17) 0.0575 (14) 0.0751 (16) −0.0195 (13) 0.0219 (13) 0.0050 (13)
C12 0.0655 (14) 0.0433 (11) 0.0601 (13) −0.0075 (11) 0.0004 (11) 0.0050 (10)
C13 0.0618 (14) 0.0518 (13) 0.0656 (14) 0.0024 (11) −0.0004 (11) 0.0077 (11)
C14 0.0542 (14) 0.090 (2) 0.0917 (19) 0.0009 (14) −0.0145 (13) −0.0119 (16)

Geometric parameters (Å, °)

Cl1—C3 1.753 (2) C9—C14 1.509 (3)
Cl2—C3 1.752 (2) C10—C11 1.371 (4)
C3—C4 1.526 (3) C10—H10 0.9300
C3—H3 0.9800 C11—C12 1.376 (3)
C4—O5 1.215 (2) C11—H11 0.9300
C4—N6 1.319 (3) C12—H12 0.9300
N6—C7 1.434 (3) C13—H13A 0.9600
N6—H6N 0.78 (3) C13—H13B 0.9600
C7—C12 1.385 (3) C13—H13C 0.9600
C7—C8 1.390 (3) C14—H14A 0.9600
C8—C9 1.408 (3) C14—H14B 0.9600
C8—C13 1.500 (3) C14—H14C 0.9600
C9—C10 1.381 (4)
C4—C3—Cl2 108.55 (15) C11—C10—C9 122.0 (2)
C4—C3—Cl1 110.56 (15) C11—C10—H10 119.0
Cl2—C3—Cl1 110.33 (12) C9—C10—H10 119.0
C4—C3—H3 109.1 C10—C11—C12 119.8 (2)
Cl2—C3—H3 109.1 C10—C11—H11 120.1
Cl1—C3—H3 109.1 C12—C11—H11 120.1
O5—C4—N6 125.1 (2) C11—C12—C7 119.1 (2)
O5—C4—C3 120.6 (2) C11—C12—H12 120.5
N6—C4—C3 114.27 (17) C7—C12—H12 120.5
C4—N6—C7 124.88 (17) C8—C13—H13A 109.5
C4—N6—H6N 117.8 (17) C8—C13—H13B 109.5
C7—N6—H6N 117.3 (17) H13A—C13—H13B 109.5
C12—C7—C8 122.20 (19) C8—C13—H13C 109.5
C12—C7—N6 118.53 (18) H13A—C13—H13C 109.5
C8—C7—N6 119.27 (18) H13B—C13—H13C 109.5
C7—C8—C9 117.84 (19) C9—C14—H14A 109.5
C7—C8—C13 121.34 (19) C9—C14—H14B 109.5
C9—C8—C13 120.8 (2) H14A—C14—H14B 109.5
C10—C9—C8 119.1 (2) C9—C14—H14C 109.5
C10—C9—C14 120.1 (2) H14A—C14—H14C 109.5
C8—C9—C14 120.8 (2) H14B—C14—H14C 109.5
Cl2—C3—C4—O5 89.3 (3) N6—C7—C8—C13 2.1 (3)
Cl1—C3—C4—O5 −31.8 (3) C7—C8—C9—C10 −1.6 (3)
Cl2—C3—C4—N6 −89.0 (2) C13—C8—C9—C10 178.2 (2)
Cl1—C3—C4—N6 149.90 (18) C7—C8—C9—C14 178.5 (2)
O5—C4—N6—C7 −0.4 (4) C13—C8—C9—C14 −1.6 (3)
C3—C4—N6—C7 177.77 (19) C8—C9—C10—C11 0.5 (4)
C4—N6—C7—C12 51.9 (3) C14—C9—C10—C11 −179.7 (2)
C4—N6—C7—C8 −128.6 (2) C9—C10—C11—C12 1.0 (4)
C12—C7—C8—C9 1.5 (3) C10—C11—C12—C7 −1.2 (4)
N6—C7—C8—C9 −178.04 (18) C8—C7—C12—C11 −0.1 (3)
C12—C7—C8—C13 −178.4 (2) N6—C7—C12—C11 179.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N6—H6N···O5i 0.78 (3) 2.07 (3) 2.830 (2) 165 (2)
C3—H3···O5i 0.98 2.31 3.100 (3) 137

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2288).

References

  1. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o4708.
  4. Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91–100.
  5. Gowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. T. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675–682.
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  8. Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  10. Stoe & Cie (1987). STADI4 and REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807064550/dn2288sup1.cif

e-64-0o234-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807064550/dn2288Isup2.hkl

e-64-0o234-Isup2.hkl (96.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES