Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 12;64(Pt 1):o257. doi: 10.1107/S1600536807065063

4,6-Bis[4-(benzyl­sulfan­yl)styr­yl]-2-(methyl­sulfan­yl)pyrimidine

Min Wang a, Le-Hua Cheng a,*, Xian-Ping Chu a, Shi-You Xu a
PMCID: PMC2915314  PMID: 21200822

Abstract

The title compound, C35H30N2S3, has been synthesized by a solvent-free reaction. The mol­ecule exhibits an E,E configuration, the benzene rings and pyrimidine rings being located on the opposite sides of the C=C bonds. The centroid–centroid separation of 3.5808 (17) Å indicates the existence of π–π stacking between nearly parallel pyrimidine and benzene rings of adjacent mol­ecules.

Related literature

For details of the applications of conjugated organic mol­ecules, see: Frederiksen et al. (2001); Zhao et al. (1995). For heterocycle-based two-photon absorbing chromophores exhibiting large TPA cross-sections, see: Huang et al. (2003).graphic file with name e-64-0o257-scheme1.jpg

Experimental

Crystal data

  • C35H30N2S3

  • M r = 574.79

  • Triclinic, Inline graphic

  • a = 7.199 (1) Å

  • b = 10.1694 (15) Å

  • c = 21.161 (2) Å

  • α = 77.412 (1)°

  • β = 88.425 (3)°

  • γ = 81.129 (2)°

  • V = 1493.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 (2) K

  • 0.50 × 0.38 × 0.31 mm

Data collection

  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.875, T max = 0.920

  • 7820 measured reflections

  • 5185 independent reflections

  • 3229 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.129

  • S = 1.04

  • 5185 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807065063/xu2372sup1.cif

e-64-0o257-sup1.cif (24.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065063/xu2372Isup2.hkl

e-64-0o257-Isup2.hkl (253.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Education Committee of Anhui Province, China (KJ2007B089). We thank Professor D.-Q. Wang of Liao Cheng University for assistance with the crystal structure determination.

supplementary crystallographic information

Comment

Two-photon absorption (TPA) processes in conjugated organic molecules have aroused considerable attention due to their potential applications in optical data storage, three-dimension fluorescence imaging, photodynamic therapy, two-photon upconversion lasing and three-dimension lithographic microfabrication (Frederiksen et al., 2001; Zhao et al., 1995). A sustained level of fundamental research over the past ten years has left organic nonlinear optical (NLO) well positioned to make a technological impact in a variety of disciplines. Some studies showed that the heterocycle-based two-photon absorbing chromophores exhibit large TPA cross-sections (Huang et al., 2003). As part of our ongoing investigtion on heterocycle-based two-photon absorbing chromophores, the title compound has been prepared and its crystal structure is presented here.

The molecule structure is shown in Fig. 1. Bond lengths and angles are normal. The C7-containing and C22-containing benzene rings are nearly coplanar with the pyrimidine ring, dihedral angles being 8.59 (2)° and 8.40 (2)°, respectively. In the crystal structure, π-π stacking is observed between nearly parallel pyrimidine and C10i-containing benzene rings as shown in Fig. 2 [symmetry code: (i) 1 + x,y,z]; the dihedral angle and centroid-to-centroid separation being 8.69 (13)° and 3.5808 (17) Å, respectively.

Experimental

At room temperature, t-BuOK (5.6 g, 50 mmol) was placed into a dry mortar and milled to very small, then 2-thiomethyl-4,6-dimethylpyrimidine (1.54 g, 10 mmol) and 4-benzylthiobenzalaldehyde (4.56 g, 20 mmol) were added and mixed. The mixture was milled vigorously for about 20 min. The mixture became sticky and then continuously milled for 10 min. After completion of the reaction (monitored by TLC), the mixture was dispersed in 100 ml me thanol. The residual solid was filtered and recrystallized from anhydrous dichloromethane/methanol solution, to give microcrystals (2.87 g, yield 50%). Single crystals suitable for X-ray analysis were obtained by slow evaporation from a dichloromethane/2-propanol (3:1) solution.

Refinement

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

A diagram showing π-π stacking [symmetry code: (i) 1 + x,y,z].

Crystal data

C35H30N2S3 Z = 2
Mr = 574.79 F000 = 604
Triclinic, P1 Dx = 1.278 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 7.199 (1) Å Cell parameters from 2350 reflections
b = 10.1694 (15) Å θ = 2.5–25.8º
c = 21.161 (2) Å µ = 0.28 mm1
α = 77.412 (1)º T = 298 (2) K
β = 88.425 (3)º Block, red
γ = 81.129 (2)º 0.50 × 0.38 × 0.31 mm
V = 1493.8 (3) Å3

Data collection

Bruker SMART CCD area detector diffractometer 5185 independent reflections
Radiation source: fine-focus sealed tube 3229 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.026
T = 298(2) K θmax = 25.0º
φ and ω scans θmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.875, Tmax = 0.920 k = −12→9
7820 measured reflections l = −25→25

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.129   w = 1/[σ2(Fo2) + (0.0555P)2 + 0.0894P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
5185 reflections Δρmax = 0.22 e Å3
361 parameters Δρmin = −0.21 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.57325 (12) 0.40771 (8) 0.15862 (4) 0.0709 (3)
S2 −0.76178 (11) 1.09386 (8) 0.14193 (4) 0.0630 (3)
S3 1.42863 (10) 0.70995 (8) 0.54464 (4) 0.0593 (2)
N1 0.6566 (3) 0.5069 (2) 0.25966 (10) 0.0453 (5)
N2 0.3517 (3) 0.5797 (2) 0.21019 (10) 0.0477 (6)
C1 0.5236 (4) 0.5089 (3) 0.21646 (12) 0.0461 (7)
C2 0.3081 (4) 0.6646 (3) 0.25115 (12) 0.0437 (6)
C3 0.4379 (4) 0.6735 (3) 0.29656 (12) 0.0472 (7)
H3 0.4085 0.7335 0.3241 0.057*
C4 0.6107 (4) 0.5926 (3) 0.30053 (12) 0.0435 (6)
C5 0.1233 (4) 0.7484 (3) 0.24433 (13) 0.0525 (7)
H5 0.0955 0.8108 0.2708 0.063*
C6 −0.0066 (4) 0.7414 (3) 0.20317 (13) 0.0487 (7)
H6 0.0239 0.6759 0.1785 0.058*
C7 −0.1931 (4) 0.8236 (3) 0.19117 (12) 0.0449 (7)
C8 −0.2598 (4) 0.9304 (3) 0.22157 (13) 0.0553 (8)
H8 −0.1856 0.9487 0.2529 0.066*
C9 −0.4317 (4) 1.0091 (3) 0.20649 (13) 0.0535 (8)
H9 −0.4712 1.0804 0.2272 0.064*
C10 −0.5476 (4) 0.9832 (3) 0.16040 (13) 0.0468 (7)
C11 −0.4868 (4) 0.8747 (3) 0.13147 (13) 0.0496 (7)
H11 −0.5639 0.8539 0.1016 0.060*
C12 −0.3126 (4) 0.7972 (3) 0.14656 (12) 0.0487 (7)
H12 −0.2740 0.7252 0.1263 0.058*
C13 −0.8416 (4) 1.0492 (3) 0.06998 (14) 0.0627 (9)
H13A −0.7393 1.0448 0.0393 0.075*
H13B −0.8820 0.9604 0.0813 0.075*
C14 −1.0021 (4) 1.1548 (3) 0.03979 (13) 0.0518 (7)
C15 −1.1850 (4) 1.1341 (3) 0.05280 (14) 0.0610 (8)
H15 −1.2083 1.0543 0.0808 0.073*
C16 −1.3336 (5) 1.2288 (4) 0.02532 (19) 0.0816 (11)
H16 −1.4562 1.2134 0.0352 0.098*
C17 −1.3021 (7) 1.3434 (5) −0.01566 (19) 0.0933 (14)
H17 −1.4033 1.4061 −0.0351 0.112*
C18 −1.1220 (8) 1.3695 (4) −0.02939 (19) 0.1124 (15)
H18 −1.1011 1.4499 −0.0574 0.135*
C19 −0.9702 (5) 1.2737 (4) −0.00067 (17) 0.0872 (11)
H19 −0.8477 1.2910 −0.0091 0.105*
C20 0.7619 (4) 0.5923 (3) 0.34563 (12) 0.0481 (7)
H20 0.8696 0.5292 0.3446 0.058*
C21 0.7625 (4) 0.6709 (3) 0.38730 (12) 0.0486 (7)
H21 0.6516 0.7290 0.3911 0.058*
C22 0.9207 (4) 0.6763 (3) 0.42844 (12) 0.0442 (6)
C23 0.8985 (4) 0.7586 (3) 0.47332 (13) 0.0556 (8)
H23 0.7807 0.8077 0.4779 0.067*
C24 1.0456 (4) 0.7700 (3) 0.51137 (13) 0.0553 (8)
H24 1.0254 0.8246 0.5416 0.066*
C25 1.2236 (4) 0.6999 (3) 0.50432 (12) 0.0437 (6)
C26 1.2470 (4) 0.6161 (3) 0.45996 (12) 0.0502 (7)
H26 1.3648 0.5673 0.4549 0.060*
C27 1.0977 (4) 0.6045 (3) 0.42341 (13) 0.0505 (7)
H27 1.1165 0.5468 0.3945 0.061*
C28 1.3614 (4) 0.8283 (3) 0.59547 (16) 0.0743 (10)
H28A 1.2957 0.9133 0.5703 0.089*
H28B 1.2786 0.7914 0.6295 0.089*
C29 1.5394 (4) 0.8521 (3) 0.62436 (14) 0.0545 (8)
C30 1.6381 (5) 0.7501 (4) 0.66976 (15) 0.0777 (10)
H30 1.5944 0.6669 0.6825 0.093*
C31 1.8009 (6) 0.7694 (4) 0.69664 (17) 0.0919 (12)
H31 1.8660 0.6999 0.7278 0.110*
C32 1.8670 (5) 0.8905 (4) 0.67762 (17) 0.0742 (10)
H32 1.9762 0.9038 0.6962 0.089*
C33 1.7747 (5) 0.9907 (3) 0.63203 (16) 0.0704 (9)
H33 1.8214 1.0726 0.6186 0.085*
C34 1.6106 (5) 0.9720 (3) 0.60510 (15) 0.0682 (9)
H34 1.5477 1.0417 0.5735 0.082*
C35 0.8140 (5) 0.3378 (4) 0.17513 (18) 0.0965 (13)
H35A 0.8879 0.4104 0.1698 0.145*
H35B 0.8570 0.2800 0.1457 0.145*
H35C 0.8268 0.2855 0.2188 0.145*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0735 (6) 0.0698 (6) 0.0726 (6) 0.0162 (4) −0.0277 (5) −0.0374 (4)
S2 0.0491 (5) 0.0758 (6) 0.0681 (5) 0.0111 (4) −0.0168 (4) −0.0363 (4)
S3 0.0447 (4) 0.0671 (5) 0.0722 (5) −0.0031 (4) −0.0138 (4) −0.0303 (4)
N1 0.0461 (14) 0.0443 (13) 0.0459 (13) −0.0042 (11) −0.0087 (11) −0.0113 (10)
N2 0.0471 (14) 0.0467 (13) 0.0490 (13) −0.0035 (11) −0.0109 (11) −0.0110 (11)
C1 0.0542 (18) 0.0397 (15) 0.0435 (15) −0.0052 (13) −0.0100 (14) −0.0072 (12)
C2 0.0426 (16) 0.0443 (16) 0.0426 (15) −0.0047 (13) −0.0023 (13) −0.0070 (13)
C3 0.0478 (17) 0.0544 (17) 0.0422 (15) −0.0073 (14) −0.0027 (13) −0.0166 (13)
C4 0.0466 (17) 0.0442 (16) 0.0394 (14) −0.0096 (13) −0.0053 (13) −0.0057 (12)
C5 0.0501 (18) 0.0574 (18) 0.0514 (17) −0.0041 (14) −0.0055 (14) −0.0166 (14)
C6 0.0493 (17) 0.0429 (16) 0.0535 (17) −0.0063 (13) −0.0037 (14) −0.0098 (13)
C7 0.0419 (16) 0.0429 (16) 0.0487 (16) −0.0062 (13) −0.0044 (13) −0.0072 (13)
C8 0.0550 (19) 0.0578 (18) 0.0567 (18) −0.0080 (15) −0.0181 (15) −0.0182 (15)
C9 0.0514 (18) 0.0501 (17) 0.0628 (19) 0.0007 (14) −0.0109 (15) −0.0250 (14)
C10 0.0417 (16) 0.0492 (16) 0.0503 (16) −0.0036 (13) −0.0047 (13) −0.0141 (13)
C11 0.0428 (17) 0.0546 (17) 0.0551 (17) −0.0064 (14) −0.0102 (13) −0.0189 (14)
C12 0.0518 (18) 0.0462 (16) 0.0519 (17) −0.0067 (14) −0.0030 (14) −0.0192 (13)
C13 0.0527 (19) 0.074 (2) 0.066 (2) 0.0063 (16) −0.0156 (15) −0.0344 (17)
C14 0.0540 (19) 0.062 (2) 0.0413 (16) 0.0007 (15) −0.0049 (14) −0.0207 (15)
C15 0.054 (2) 0.069 (2) 0.0616 (19) −0.0117 (17) −0.0106 (16) −0.0160 (16)
C16 0.056 (2) 0.106 (3) 0.084 (3) 0.006 (2) −0.019 (2) −0.034 (2)
C17 0.110 (4) 0.091 (3) 0.066 (3) 0.033 (3) −0.032 (3) −0.020 (2)
C18 0.153 (5) 0.090 (3) 0.074 (3) −0.005 (3) 0.002 (3) 0.015 (2)
C19 0.083 (3) 0.102 (3) 0.070 (2) −0.015 (2) 0.012 (2) −0.006 (2)
C20 0.0444 (17) 0.0530 (17) 0.0465 (16) −0.0057 (13) −0.0058 (13) −0.0099 (13)
C21 0.0403 (16) 0.0590 (18) 0.0472 (16) −0.0062 (14) −0.0029 (13) −0.0138 (14)
C22 0.0383 (15) 0.0511 (16) 0.0454 (16) −0.0102 (13) −0.0017 (12) −0.0122 (13)
C23 0.0405 (17) 0.071 (2) 0.0616 (18) −0.0047 (15) −0.0001 (14) −0.0299 (16)
C24 0.0461 (18) 0.071 (2) 0.0581 (18) −0.0081 (15) 0.0002 (14) −0.0339 (15)
C25 0.0427 (16) 0.0449 (16) 0.0439 (15) −0.0073 (13) −0.0057 (12) −0.0094 (13)
C26 0.0423 (16) 0.0544 (17) 0.0535 (17) 0.0021 (14) −0.0070 (13) −0.0167 (14)
C27 0.0536 (18) 0.0534 (18) 0.0495 (16) −0.0038 (14) −0.0067 (14) −0.0238 (14)
C28 0.055 (2) 0.094 (3) 0.088 (2) −0.0027 (18) −0.0088 (18) −0.053 (2)
C29 0.0501 (18) 0.068 (2) 0.0533 (18) −0.0103 (16) −0.0037 (14) −0.0294 (16)
C30 0.100 (3) 0.076 (2) 0.063 (2) −0.042 (2) −0.020 (2) −0.0031 (18)
C31 0.110 (3) 0.091 (3) 0.074 (2) −0.029 (3) −0.044 (2) −0.001 (2)
C32 0.066 (2) 0.094 (3) 0.075 (2) −0.024 (2) −0.0118 (19) −0.036 (2)
C33 0.085 (3) 0.065 (2) 0.074 (2) −0.034 (2) 0.005 (2) −0.0270 (19)
C34 0.085 (3) 0.0491 (19) 0.073 (2) −0.0029 (18) −0.0146 (19) −0.0211 (16)
C35 0.080 (3) 0.110 (3) 0.106 (3) 0.032 (2) −0.030 (2) −0.066 (2)

Geometric parameters (Å, °)

S1—C1 1.760 (3) C16—H16 0.9300
S1—C35 1.782 (3) C17—C18 1.374 (6)
S2—C10 1.761 (3) C17—H17 0.9300
S2—C13 1.812 (3) C18—C19 1.401 (5)
S3—C25 1.753 (3) C18—H18 0.9300
S3—C28 1.788 (3) C19—H19 0.9300
N1—C1 1.336 (3) C20—C21 1.314 (3)
N1—C4 1.357 (3) C20—H20 0.9300
N2—C1 1.327 (3) C21—C22 1.467 (3)
N2—C2 1.350 (3) C21—H21 0.9300
C2—C3 1.385 (3) C22—C27 1.381 (3)
C2—C5 1.457 (3) C22—C23 1.387 (3)
C3—C4 1.376 (3) C23—C24 1.381 (3)
C3—H3 0.9300 C23—H23 0.9300
C4—C20 1.466 (3) C24—C25 1.388 (3)
C5—C6 1.316 (3) C24—H24 0.9300
C5—H5 0.9300 C25—C26 1.390 (3)
C6—C7 1.465 (3) C26—C27 1.375 (3)
C6—H6 0.9300 C26—H26 0.9300
C7—C12 1.389 (3) C27—H27 0.9300
C7—C8 1.397 (3) C28—C29 1.509 (4)
C8—C9 1.370 (4) C28—H28A 0.9700
C8—H8 0.9300 C28—H28B 0.9700
C9—C10 1.394 (3) C29—C30 1.371 (4)
C9—H9 0.9300 C29—C34 1.371 (4)
C10—C11 1.383 (3) C30—C31 1.376 (4)
C11—C12 1.380 (3) C30—H30 0.9300
C11—H11 0.9300 C31—C32 1.363 (5)
C12—H12 0.9300 C31—H31 0.9300
C13—C14 1.502 (4) C32—C33 1.345 (4)
C13—H13A 0.9700 C32—H32 0.9300
C13—H13B 0.9700 C33—C34 1.382 (4)
C14—C19 1.369 (4) C33—H33 0.9300
C14—C15 1.376 (4) C34—H34 0.9300
C15—C16 1.372 (4) C35—H35A 0.9600
C15—H15 0.9300 C35—H35B 0.9600
C16—C17 1.339 (5) C35—H35C 0.9600
C1—S1—C35 102.24 (14) C17—C18—H18 120.3
C10—S2—C13 102.92 (12) C19—C18—H18 120.3
C25—S3—C28 106.17 (13) C14—C19—C18 120.0 (4)
C1—N1—C4 115.2 (2) C14—C19—H19 120.0
C1—N2—C2 115.8 (2) C18—C19—H19 120.0
N2—C1—N1 128.4 (2) C21—C20—C4 127.4 (3)
N2—C1—S1 112.86 (18) C21—C20—H20 116.3
N1—C1—S1 118.8 (2) C4—C20—H20 116.3
N2—C2—C3 120.5 (2) C20—C21—C22 126.5 (3)
N2—C2—C5 117.6 (2) C20—C21—H21 116.7
C3—C2—C5 121.8 (2) C22—C21—H21 116.7
C4—C3—C2 119.3 (2) C27—C22—C23 117.0 (2)
C4—C3—H3 120.3 C27—C22—C21 122.5 (2)
C2—C3—H3 120.3 C23—C22—C21 120.5 (2)
N1—C4—C3 120.8 (2) C24—C23—C22 122.2 (3)
N1—C4—C20 114.0 (2) C24—C23—H23 118.9
C3—C4—C20 125.2 (2) C22—C23—H23 118.9
C6—C5—C2 124.2 (2) C23—C24—C25 119.9 (2)
C6—C5—H5 117.9 C23—C24—H24 120.1
C2—C5—H5 117.9 C25—C24—H24 120.1
C5—C6—C7 128.3 (3) C24—C25—C26 118.4 (2)
C5—C6—H6 115.8 C24—C25—S3 126.20 (19)
C7—C6—H6 115.8 C26—C25—S3 115.4 (2)
C12—C7—C8 116.8 (2) C27—C26—C25 120.7 (2)
C12—C7—C6 119.4 (2) C27—C26—H26 119.7
C8—C7—C6 123.9 (2) C25—C26—H26 119.7
C9—C8—C7 121.9 (2) C26—C27—C22 121.8 (2)
C9—C8—H8 119.1 C26—C27—H27 119.1
C7—C8—H8 119.1 C22—C27—H27 119.1
C8—C9—C10 120.5 (2) C29—C28—S3 107.2 (2)
C8—C9—H9 119.8 C29—C28—H28A 110.3
C10—C9—H9 119.8 S3—C28—H28A 110.3
C11—C10—C9 118.5 (2) C29—C28—H28B 110.3
C11—C10—S2 124.3 (2) S3—C28—H28B 110.3
C9—C10—S2 117.21 (19) H28A—C28—H28B 108.5
C12—C11—C10 120.5 (2) C30—C29—C34 118.2 (3)
C12—C11—H11 119.8 C30—C29—C28 119.7 (3)
C10—C11—H11 119.8 C34—C29—C28 122.1 (3)
C11—C12—C7 121.9 (2) C29—C30—C31 120.8 (3)
C11—C12—H12 119.0 C29—C30—H30 119.6
C7—C12—H12 119.0 C31—C30—H30 119.6
C14—C13—S2 109.33 (18) C32—C31—C30 120.0 (3)
C14—C13—H13A 109.8 C32—C31—H31 120.0
S2—C13—H13A 109.8 C30—C31—H31 120.0
C14—C13—H13B 109.8 C33—C32—C31 120.2 (3)
S2—C13—H13B 109.8 C33—C32—H32 119.9
H13A—C13—H13B 108.3 C31—C32—H32 119.9
C19—C14—C15 118.6 (3) C32—C33—C34 120.0 (3)
C19—C14—C13 120.9 (3) C32—C33—H33 120.0
C15—C14—C13 120.5 (3) C34—C33—H33 120.0
C16—C15—C14 121.4 (3) C29—C34—C33 120.8 (3)
C16—C15—H15 119.3 C29—C34—H34 119.6
C14—C15—H15 119.3 C33—C34—H34 119.6
C17—C16—C15 120.0 (4) S1—C35—H35A 109.5
C17—C16—H16 120.0 S1—C35—H35B 109.5
C15—C16—H16 120.0 H35A—C35—H35B 109.5
C16—C17—C18 120.8 (4) S1—C35—H35C 109.5
C16—C17—H17 119.6 H35A—C35—H35C 109.5
C18—C17—H17 119.6 H35B—C35—H35C 109.5
C17—C18—C19 119.3 (4)
C2—N2—C1—N1 2.8 (4) C13—C14—C15—C16 −179.5 (2)
C2—N2—C1—S1 −176.85 (19) C14—C15—C16—C17 0.8 (5)
C4—N1—C1—N2 −2.8 (4) C15—C16—C17—C18 −1.8 (6)
C4—N1—C1—S1 176.89 (19) C16—C17—C18—C19 0.9 (6)
C35—S1—C1—N2 175.6 (2) C15—C14—C19—C18 −1.9 (5)
C35—S1—C1—N1 −4.1 (3) C13—C14—C19—C18 178.6 (3)
C1—N2—C2—C3 −0.5 (4) C17—C18—C19—C14 1.0 (6)
C1—N2—C2—C5 177.7 (2) N1—C4—C20—C21 175.0 (3)
N2—C2—C3—C4 −1.4 (4) C3—C4—C20—C21 −3.0 (5)
C5—C2—C3—C4 −179.5 (2) C4—C20—C21—C22 −174.9 (2)
C1—N1—C4—C3 0.4 (4) C20—C21—C22—C27 5.9 (5)
C1—N1—C4—C20 −177.7 (2) C20—C21—C22—C23 −176.1 (3)
C2—C3—C4—N1 1.4 (4) C27—C22—C23—C24 0.4 (4)
C2—C3—C4—C20 179.3 (2) C21—C22—C23—C24 −177.7 (3)
N2—C2—C5—C6 3.6 (4) C22—C23—C24—C25 1.4 (5)
C3—C2—C5—C6 −178.2 (3) C23—C24—C25—C26 −1.9 (4)
C2—C5—C6—C7 −177.8 (3) C23—C24—C25—S3 175.9 (2)
C5—C6—C7—C12 −178.0 (3) C28—S3—C25—C24 −0.3 (3)
C5—C6—C7—C8 2.8 (5) C28—S3—C25—C26 177.6 (2)
C12—C7—C8—C9 −2.5 (4) C24—C25—C26—C27 0.8 (4)
C6—C7—C8—C9 176.7 (3) S3—C25—C26—C27 −177.3 (2)
C7—C8—C9—C10 1.0 (5) C25—C26—C27—C22 0.9 (4)
C8—C9—C10—C11 1.3 (4) C23—C22—C27—C26 −1.5 (4)
C8—C9—C10—S2 −177.6 (2) C21—C22—C27—C26 176.6 (3)
C13—S2—C10—C11 −10.8 (3) C25—S3—C28—C29 −173.1 (2)
C13—S2—C10—C9 168.1 (2) S3—C28—C29—C30 −70.1 (3)
C9—C10—C11—C12 −2.1 (4) S3—C28—C29—C34 107.6 (3)
S2—C10—C11—C12 176.7 (2) C34—C29—C30—C31 2.0 (5)
C10—C11—C12—C7 0.5 (4) C28—C29—C30—C31 179.8 (3)
C8—C7—C12—C11 1.7 (4) C29—C30—C31—C32 −0.8 (6)
C6—C7—C12—C11 −177.5 (2) C30—C31—C32—C33 −0.8 (6)
C10—S2—C13—C14 −168.0 (2) C31—C32—C33—C34 1.1 (5)
S2—C13—C14—C19 83.3 (3) C30—C29—C34—C33 −1.7 (5)
S2—C13—C14—C15 −96.2 (3) C28—C29—C34—C33 −179.5 (3)
C19—C14—C15—C16 1.1 (4) C32—C33—C34—C29 0.2 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2372).

References

  1. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Frederiksen, P. K., Jorgensen, M. & Ogilby, P. R. (2001). J. Am. Chem. Soc.123, 1215–1216. [DOI] [PubMed]
  4. Huang, Z. L., Lei, H., Li, N., Qiu, Z. R., Wang, H. Z., Guo, J. D., Luo, Y., Zhong, Z. P., Liu, X. F. & Zhou, Z. H. (2003). J. Mater. Chem.13, 708–711.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  7. Zhao, C. F., He, G. S., Bhawalker, J. D., Park, C. K. & Prasad, P. N. (1995). Chem. Mater.7, 1979–1983.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807065063/xu2372sup1.cif

e-64-0o257-sup1.cif (24.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065063/xu2372Isup2.hkl

e-64-0o257-Isup2.hkl (253.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES