Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 18;64(Pt 1):o272. doi: 10.1107/S1600536807065889

1,2-Bis[amino­(pyrimidin-2-yl)methyl­ene]hydrazine dihydrate

Shuo Shi a,*, Tian-ming Yao a, Xiao-ting Geng a, Lin Chen b, Liang-nian Ji b
PMCID: PMC2915327  PMID: 21200837

Abstract

The centrosymmetric organic molecule in the title compound, C10H10N8·2H2O, is essentially flat and has a trans configuration. The mol­ecules are linked by inter­molecular O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds to form a linear chain structure.

Related literature

For related structures, see: Armstrong et al. (1998); Case (1965); Thompson et al. (1998); Xu et al. (1997, 1998, 2000, 2001).graphic file with name e-64-0o272-scheme1.jpg

Experimental

Crystal data

  • C10H10N8·2H2O

  • M r = 278.15

  • Triclinic, Inline graphic

  • a = 6.109 (2) Å

  • b = 7.502 (3) Å

  • c = 7.588 (3) Å

  • α = 105.112 (6)°

  • β = 106.975 (7)°

  • γ = 99.193 (6)°

  • V = 310.41 (19) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 (2) K

  • 0.48 × 0.22 × 0.18 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.949, T max = 0.980

  • 1526 measured reflections

  • 1036 independent reflections

  • 778 reflections with I > 2σ(I)

  • R int = 0.008

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.102

  • S = 1.04

  • 1036 reflections

  • 107 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT-Plus and SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807065889/ng2403sup1.cif

e-64-0o272-sup1.cif (12.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065889/ng2403Isup2.hkl

e-64-0o272-Isup2.hkl (51.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯N1ii 0.85 (2) 2.59 (2) 3.276 (2) 138.5 (16)
N3—H3C⋯O1Wiii 0.89 (2) 2.17 (3) 3.043 (3) 166.7 (19)
O1W—H1WA⋯N2iv 0.79 (3) 2.20 (3) 2.979 (2) 168 (3)
O1W—H1WB⋯N4 0.91 (3) 2.16 (3) 3.055 (2) 172 (2)

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the National Natural Science Foundation of China, the Research Fund for the Doctoral Program of Higher Education, and the Program for Young Excellent Talents in Tongji University for financial support.

supplementary crystallographic information

Comment

The title compound, (I) (Fig. 1), can be regarded as a dihydrazidine. It is formed as the major product from mixing 2-cyanopyrimidine and hydrazine in ethanol (Case, 1965) and the minor product is Pyrimidine-2-carboxamide hydrazone, (II)(Scheme. 1). Compound (I) has now been shown to have trans geometry (Fig. 1), with all atoms essentially coplanar. The overall trans configuration is therefore due mainly to steric repulsion effects. The title compound contains a single N—N bond, presents several possible mononucleating and dinucleating coordination modes and, also, the potential for free rotation about the N—N bond. The flexible geometries result from the ability of the systems to rotate freely about the single N—N bond of the diazine fragment of the compound.

Refinement

All H atoms were placed in geometrically positions and constrained to ride on their parent atoms, with N—H distances in the range 0.85—0.89 Å and C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C or N) for all H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels.

Crystal data

C10H10N8·2H2O V = 310.41 (19) Å3
Mr = 278.15 Z = 1
Triclinic, P1 F000 = 146
a = 6.109 (2) Å Dx = 1.489 Mg m3
b = 7.502 (3) Å Mo Kα radiation λ = 0.71073 Å
c = 7.588 (3) Å µ = 0.11 mm1
α = 105.112 (6)º T = 293 (2) K
β = 106.975 (7)º Prism, yellow
γ = 99.193 (6)º 0.48 × 0.22 × 0.18 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 1036 independent reflections
Radiation source: fine-focus sealed tube 778 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.008
T = 293(2) K θmax = 25.0º
φ and ω scans θmin = 2.9º
Absorption correction: multi-scan(SADABS; Bruker, 2000) h = −7→7
Tmin = 0.949, Tmax = 0.980 k = −8→8
1526 measured reflections l = −9→8

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102   w = 1/[σ2(Fo2) + (0.0576P)2 + 0.0469P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
1036 reflections Δρmax = 0.15 e Å3
107 parameters Δρmin = −0.14 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6787 (3) 0.9111 (3) 1.2198 (3) 0.0443 (5)
H1A 0.7942 1.0004 1.3310 0.053*
C2 0.4674 (4) 0.8331 (3) 1.2312 (3) 0.0452 (5)
H2A 0.4367 0.8673 1.3468 0.054*
C3 0.3041 (4) 0.7028 (3) 1.0649 (3) 0.0440 (5)
H3A 0.1575 0.6498 1.0681 0.053*
C4 0.5561 (3) 0.7320 (2) 0.9025 (2) 0.0309 (4)
C5 0.6110 (3) 0.6704 (2) 0.7210 (2) 0.0307 (4)
N1 0.7253 (3) 0.8640 (2) 1.0550 (2) 0.0382 (4)
N2 0.3437 (3) 0.6477 (2) 0.8988 (2) 0.0385 (4)
N3 0.8159 (3) 0.7655 (3) 0.7217 (3) 0.0469 (5)
H3B 0.900 (3) 0.857 (3) 0.825 (3) 0.042 (6)*
H3C 0.856 (4) 0.732 (3) 0.617 (3) 0.052 (6)*
N4 0.4600 (2) 0.5260 (2) 0.5788 (2) 0.0334 (4)
O1W 0.0384 (3) 0.6771 (2) 0.4092 (2) 0.0477 (4)
H1WA −0.074 (5) 0.593 (4) 0.338 (4) 0.079 (10)*
H1WB 0.153 (5) 0.624 (4) 0.462 (4) 0.088 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0481 (12) 0.0404 (11) 0.0308 (11) −0.0017 (9) 0.0107 (9) 0.0008 (9)
C2 0.0579 (13) 0.0404 (11) 0.0357 (11) 0.0055 (10) 0.0225 (10) 0.0069 (9)
C3 0.0444 (11) 0.0439 (11) 0.0446 (12) 0.0037 (9) 0.0236 (9) 0.0112 (10)
C4 0.0288 (10) 0.0301 (9) 0.0312 (10) 0.0067 (7) 0.0086 (8) 0.0085 (8)
C5 0.0248 (9) 0.0309 (9) 0.0318 (10) 0.0033 (7) 0.0087 (8) 0.0066 (8)
N1 0.0375 (9) 0.0355 (9) 0.0317 (9) 0.0005 (7) 0.0088 (7) 0.0036 (7)
N2 0.0336 (8) 0.0403 (9) 0.0355 (9) 0.0017 (7) 0.0132 (7) 0.0055 (7)
N3 0.0373 (10) 0.0480 (11) 0.0388 (11) −0.0092 (8) 0.0184 (8) −0.0062 (9)
N4 0.0295 (8) 0.0374 (9) 0.0285 (8) 0.0037 (7) 0.0114 (7) 0.0043 (7)
O1W 0.0387 (9) 0.0457 (9) 0.0505 (9) 0.0026 (8) 0.0134 (7) 0.0097 (8)

Geometric parameters (Å, °)

C1—N1 1.335 (2) C4—C5 1.487 (2)
C1—C2 1.366 (3) C5—N4 1.296 (2)
C1—H1A 0.9300 C5—N3 1.336 (2)
C2—C3 1.361 (3) N3—H3B 0.85 (2)
C2—H2A 0.9300 N3—H3C 0.89 (2)
C3—N2 1.325 (3) N4—N4i 1.407 (3)
C3—H3A 0.9300 O1W—H1WA 0.79 (3)
C4—N1 1.328 (2) O1W—H1WB 0.91 (3)
C4—N2 1.339 (2)
N1—C1—C2 122.40 (17) N2—C4—C5 117.39 (15)
N1—C1—H1A 118.8 N4—C5—N3 125.86 (17)
C2—C1—H1A 118.8 N4—C5—C4 117.26 (15)
C3—C2—C1 116.68 (18) N3—C5—C4 116.84 (16)
C3—C2—H2A 121.7 C4—N1—C1 116.03 (16)
C1—C2—H2A 121.7 C3—N2—C4 115.50 (16)
N2—C3—C2 123.30 (19) C5—N3—H3B 116.4 (13)
N2—C3—H3A 118.4 C5—N3—H3C 119.7 (14)
C2—C3—H3A 118.4 H3B—N3—H3C 123.9 (19)
N1—C4—N2 126.04 (17) C5—N4—N4i 111.67 (16)
N1—C4—C5 116.56 (15) H1WA—O1W—H1WB 108 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3B···N1ii 0.85 (2) 2.59 (2) 3.276 (2) 138.5 (16)
N3—H3C···O1Wiii 0.89 (2) 2.17 (3) 3.043 (3) 166.7 (19)
O1W—H1WA···N2iv 0.79 (3) 2.20 (3) 2.979 (2) 168 (3)
O1W—H1WB···N4 0.91 (3) 2.16 (3) 3.055 (2) 172 (2)

Symmetry codes: (ii) −x+2, −y+2, −z+2; (iii) x+1, y, z; (iv) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2403).

References

  1. Armstrong, J. A., Barnes, J. C. & Weakley, T. J. R. (1998). Acta Cryst. C54, 1923–1925.
  2. Bruker (1998). SMART, SAINT-Plus and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Case, F. H. (1965). J. Org. Chem.30, 931–933.
  5. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  6. Thompson, L. K., Xu, Z. Q., Goeta, A. E., Howard, J. A. K., Clase, H. J. & Miller, D. O. (1998). Inorg. Chem.37, 3217–3229. [DOI] [PubMed]
  7. Xu, Z. Q., Thompson, L. K., Black, D. A., Ralph, C., Miller, D. O., Leech, M. A. & Howard, J. A. K. (2001). J. Chem. Soc. Dalton Trans. pp. 2042–2048.
  8. Xu, Z. Q., Thompson, L. K. & Miller, D. O. (1997). Inorg. Chem.36, 3985–3995.
  9. Xu, Z. Q., Thompson, L. K., Miller, D. O., Clase, H. J., Howard, J. A. K. & Goeta, A. E. (1998). Inorg. Chem.37, 3620–3627. [DOI] [PubMed]
  10. Xu, Z. Q., White, S., Thompson, L. K., Miller, D. O., Ohba, M., Okawa, H., Wilson, C. & Howard, J. A. K. (2000). J. Chem. Soc. Dalton Trans. pp. 1751–1757.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807065889/ng2403sup1.cif

e-64-0o272-sup1.cif (12.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065889/ng2403Isup2.hkl

e-64-0o272-Isup2.hkl (51.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES