Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 18;64(Pt 1):o275. doi: 10.1107/S1600536807066305

4-Hydroxy-2,2,6,6-tetra­methyl­piperidinium trifluoro­acetate

Yan-Xue Chen a, Mei-Ling Han a, Yi Deng b,*, Jin-Hui Yang c
PMCID: PMC2915329  PMID: 21200840

Abstract

The title compound, C9H20NO+·C2F3O2 , is an important inter­mediate in the synthesis of hindered light stabilizers. The piperidinium ring adopts a chair conformation with the hydroxyl group in an equatorial position. The crystal packing is stabilized by O—H⋯O and N—H⋯O hydrogen bonds. The CF3 group is disordered over two positions with almost equal site occupancy factors.

Related literature

For general background, see: Borzatta & Carrozza (1991). For related structures, see: Nengfang et al. (2005).graphic file with name e-64-0o275-scheme1.jpg

Experimental

Crystal data

  • C9H20NO+·C2F3O2

  • M r = 271.28

  • Orthorhombic, Inline graphic

  • a = 7.6204 (8) Å

  • b = 9.8939 (10) Å

  • c = 18.099 (2) Å

  • V = 1364.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 113 (2) K

  • 0.22 × 0.20 × 0.16 mm

Data collection

  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) T min = 0.974, T max = 0.981

  • 17989 measured reflections

  • 2039 independent reflections

  • 1993 reflections with I > 2σ(I)

  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.132

  • S = 1.23

  • 2039 reflections

  • 202 parameters

  • 48 restraints

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066305/bt2664sup1.cif

e-64-0o275-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066305/bt2664Isup2.hkl

e-64-0o275-Isup2.hkl (100.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2 0.92 1.88 2.786 (3) 169
N1—H1A⋯O1i 0.92 1.96 2.869 (3) 171
O1—H1⋯O3ii 0.84 1.85 2.682 (3) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

4-hydroxyl-2,2,6,6-tetramethylpiperidine is a very important intermediate in the synthesis of hindered light stabilizers (Borzatta & Carrozza, 1991; She et al., 2005). The piperidium ring adopts a chair conformation with the hydroxyl group in an equatorial position. The crystal packing is stabilized by O—H···O and N—H···O hydrogen bonds.

Experimental

An ethanol solution (10 ml) of 2,2,6,6-tetramethylpiperidin-4-ol (3.2 mmol, 0.5 g) was added dropwise to a stirred aqueous solution (6 ml) of trifluoroacetic acid (3.8 mmol, 0.43 g) at 293 K. Then the reaction mixture was filtered and the filtrate stood for about five days until colourless needle shaped crystals were obtained.

Refinement

In the absence of anomalous scatterers, Friedel pairs had been merged and the absolute structure was arbitrarily assigned. All H atoms were positioned geometrically with C—H ranging from 0.98Å to 1.00Å and refined as riding with Uiso(H)=1.2Ueq(C,N,O) or 1.5eq(Cmethyl). The CF3 group is disordered over two position with a ratio of occupancy factors of 0.459 (1)/0.541 (1). The atoms of the CF3 group were restrained to an isotropic behaviour.

Figures

Fig. 1.

Fig. 1.

A perspective view of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Only the major occupied site of the disordered CF3 group is shown.

Crystal data

C9H20NO+·C2F3O2 Dx = 1.320 Mg m3
Mr = 271.28 Mo Kα radiation λ = 0.71070 Å
Orthorhombic, P212121 Cell parameters from 4344 reflections
a = 7.6204 (8) Å θ = 2.1–28.7º
b = 9.8939 (10) Å µ = 0.12 mm1
c = 18.099 (2) Å T = 113 (2) K
V = 1364.6 (2) Å3 Needle, colourless
Z = 4 0.22 × 0.20 × 0.16 mm
F000 = 576

Data collection

Rigaku Saturn diffractometer 2039 independent reflections
Radiation source: rotating anode 1993 reflections with I > 2σ(I)
Monochromator: confocal Rint = 0.057
Detector resolution: 14.63 pixels mm-1 θmax = 28.7º
T = 113(2) K θmin = 2.3º
ω scans h = −10→10
Absorption correction: multi-scan(CrystalClear; Rigaku/MSC, 2005) k = −13→13
Tmin = 0.974, Tmax = 0.981 l = −24→24
17989 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057 H-atom parameters constrained
wR(F2) = 0.132   w = 1/[σ2(Fo2) + (0.0506P)2 + 0.4132P] where P = (Fo2 + 2Fc2)/3
S = 1.23 (Δ/σ)max = 0.001
2039 reflections Δρmax = 0.22 e Å3
202 parameters Δρmin = −0.21 e Å3
48 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.028 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.9028 (3) −0.20835 (18) 0.73102 (11) 0.0271 (5)
H1 0.8683 −0.2769 0.7078 0.041*
O2 0.6874 (3) 0.4099 (2) 0.58896 (13) 0.0394 (6)
O3 0.7885 (3) 0.5590 (2) 0.67201 (12) 0.0398 (6)
N1 0.8175 (3) 0.1997 (2) 0.67551 (12) 0.0226 (5)
H1A 0.9012 0.2378 0.7056 0.027*
H1B 0.7631 0.2695 0.6510 0.027*
C1 0.6801 (4) 0.1339 (3) 0.72563 (15) 0.0244 (5)
C2 0.7571 (4) 0.0022 (3) 0.75609 (14) 0.0241 (5)
H2A 0.8503 0.0245 0.7922 0.029*
H2B 0.6639 −0.0475 0.7827 0.029*
C3 0.8336 (4) −0.0893 (3) 0.69685 (14) 0.0233 (5)
H3 0.7392 −0.1152 0.6612 0.028*
C4 0.9789 (4) −0.0143 (3) 0.65571 (15) 0.0234 (5)
H4A 1.0300 −0.0753 0.6181 0.028*
H4B 1.0729 0.0095 0.6911 0.028*
C5 0.9142 (4) 0.1151 (3) 0.61754 (14) 0.0241 (6)
C6 0.6475 (4) 0.2352 (3) 0.78794 (18) 0.0326 (7)
H6A 0.7557 0.2477 0.8164 0.049*
H6B 0.5549 0.2009 0.8205 0.049*
H6C 0.6110 0.3220 0.7668 0.049*
C7 0.5089 (4) 0.1126 (3) 0.68236 (19) 0.0335 (7)
H7A 0.4141 0.0899 0.7168 0.050*
H7B 0.5244 0.0387 0.6469 0.050*
H7C 0.4789 0.1958 0.6558 0.050*
C8 1.0678 (4) 0.2025 (3) 0.59214 (16) 0.0302 (6)
H8A 1.0229 0.2852 0.5691 0.045*
H8B 1.1384 0.1522 0.5562 0.045*
H8C 1.1408 0.2262 0.6348 0.045*
C9 0.7963 (4) 0.0851 (3) 0.55106 (16) 0.0331 (7)
H9A 0.7112 0.0149 0.5643 0.050*
H9B 0.8685 0.0536 0.5097 0.050*
H9C 0.7338 0.1675 0.5366 0.050*
C10 0.7562 (4) 0.5187 (3) 0.60881 (16) 0.0281 (6)
C11 0.8356 (12) 0.6096 (9) 0.5496 (5) 0.037 (3) 0.459 (14)
F1 0.7559 (17) 0.7299 (6) 0.5473 (4) 0.067 (3) 0.459 (14)
F2 1.0045 (10) 0.6341 (15) 0.5611 (4) 0.086 (4) 0.459 (14)
F3 0.8194 (18) 0.5655 (13) 0.4799 (6) 0.070 (4) 0.459 (14)
C11' 0.7828 (13) 0.6165 (8) 0.5453 (4) 0.042 (3) 0.541 (14)
F1' 0.6352 (15) 0.6809 (12) 0.5291 (5) 0.126 (4) 0.541 (14)
F2' 0.900 (2) 0.7116 (8) 0.5599 (3) 0.099 (5) 0.541 (14)
F3' 0.8406 (14) 0.5571 (12) 0.4839 (5) 0.070 (4) 0.541 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0347 (11) 0.0164 (8) 0.0303 (10) 0.0008 (8) −0.0069 (9) 0.0017 (8)
O2 0.0504 (13) 0.0219 (10) 0.0458 (12) −0.0013 (10) −0.0187 (11) −0.0011 (9)
O3 0.0615 (15) 0.0274 (10) 0.0306 (11) −0.0091 (11) −0.0059 (11) −0.0024 (9)
N1 0.0236 (11) 0.0177 (10) 0.0266 (10) −0.0003 (9) −0.0010 (9) −0.0003 (9)
C1 0.0212 (12) 0.0193 (11) 0.0327 (14) −0.0006 (10) 0.0012 (11) 0.0002 (10)
C2 0.0220 (12) 0.0239 (12) 0.0266 (12) −0.0010 (11) 0.0014 (10) 0.0015 (10)
C3 0.0260 (13) 0.0189 (11) 0.0251 (12) 0.0016 (10) −0.0050 (10) 0.0015 (10)
C4 0.0242 (12) 0.0226 (12) 0.0235 (12) 0.0017 (11) −0.0001 (10) −0.0021 (10)
C5 0.0278 (13) 0.0202 (12) 0.0244 (12) 0.0020 (11) −0.0004 (11) −0.0008 (10)
C6 0.0298 (15) 0.0269 (14) 0.0412 (16) 0.0004 (12) 0.0098 (13) −0.0047 (13)
C7 0.0242 (13) 0.0266 (13) 0.0498 (18) 0.0009 (11) −0.0036 (13) 0.0032 (14)
C8 0.0356 (16) 0.0263 (14) 0.0286 (14) −0.0029 (13) 0.0046 (12) 0.0016 (12)
C9 0.0434 (18) 0.0272 (14) 0.0287 (14) 0.0013 (13) −0.0109 (13) 0.0016 (11)
C10 0.0292 (13) 0.0200 (12) 0.0351 (14) 0.0032 (11) −0.0061 (12) −0.0015 (11)
C11 0.048 (5) 0.030 (5) 0.033 (5) −0.009 (4) −0.006 (4) −0.004 (4)
F1 0.132 (8) 0.020 (3) 0.049 (4) 0.017 (4) 0.014 (4) 0.011 (2)
F2 0.064 (5) 0.129 (9) 0.065 (4) −0.058 (5) 0.007 (3) 0.005 (5)
F3 0.136 (10) 0.043 (6) 0.030 (5) −0.037 (6) −0.025 (5) 0.002 (4)
C11' 0.063 (6) 0.037 (4) 0.026 (4) 0.000 (4) −0.010 (3) −0.001 (3)
F1' 0.123 (7) 0.136 (7) 0.120 (6) 0.051 (6) −0.004 (5) 0.080 (5)
F2' 0.198 (13) 0.060 (5) 0.039 (3) −0.082 (7) 0.013 (6) −0.012 (3)
F3' 0.105 (7) 0.063 (7) 0.042 (5) −0.025 (5) 0.042 (4) −0.024 (4)

Geometric parameters (Å, °)

O1—C3 1.431 (3) C6—H6A 0.9800
O1—H1 0.8400 C6—H6B 0.9800
O2—C10 1.250 (3) C6—H6C 0.9800
O3—C10 1.236 (3) C7—H7A 0.9800
N1—C1 1.531 (3) C7—H7B 0.9800
N1—C5 1.531 (3) C7—H7C 0.9800
N1—H1A 0.9200 C8—H8A 0.9800
N1—H1B 0.9200 C8—H8B 0.9800
C1—C6 1.529 (4) C8—H8C 0.9800
C1—C2 1.531 (4) C9—H9A 0.9800
C1—C7 1.537 (4) C9—H9B 0.9800
C2—C3 1.519 (4) C9—H9C 0.9800
C2—H2A 0.9900 C10—C11' 1.516 (7)
C2—H2B 0.9900 C10—C11 1.525 (8)
C3—C4 1.526 (4) C11—F2 1.326 (9)
C3—H3 1.0000 C11—F1 1.337 (8)
C4—C5 1.536 (4) C11—F3 1.339 (8)
C4—H4A 0.9900 C11'—F2' 1.324 (8)
C4—H4B 0.9900 C11'—F1' 1.325 (8)
C5—C8 1.527 (4) C11'—F3' 1.333 (8)
C5—C9 1.530 (4)
C3—O1—H1 109.5 H6A—C6—H6B 109.5
C1—N1—C5 120.2 (2) C1—C6—H6C 109.5
C1—N1—H1A 107.3 H6A—C6—H6C 109.5
C5—N1—H1A 107.3 H6B—C6—H6C 109.5
C1—N1—H1B 107.3 C1—C7—H7A 109.5
C5—N1—H1B 107.3 C1—C7—H7B 109.5
H1A—N1—H1B 106.9 H7A—C7—H7B 109.5
C6—C1—N1 105.6 (2) C1—C7—H7C 109.5
C6—C1—C2 110.8 (2) H7A—C7—H7C 109.5
N1—C1—C2 108.2 (2) H7B—C7—H7C 109.5
C6—C1—C7 109.1 (2) C5—C8—H8A 109.5
N1—C1—C7 109.7 (2) C5—C8—H8B 109.5
C2—C1—C7 113.1 (2) H8A—C8—H8B 109.5
C3—C2—C1 113.6 (2) C5—C8—H8C 109.5
C3—C2—H2A 108.9 H8A—C8—H8C 109.5
C1—C2—H2A 108.9 H8B—C8—H8C 109.5
C3—C2—H2B 108.9 C5—C9—H9A 109.5
C1—C2—H2B 108.9 C5—C9—H9B 109.5
H2A—C2—H2B 107.7 H9A—C9—H9B 109.5
O1—C3—C2 109.1 (2) C5—C9—H9C 109.5
O1—C3—C4 110.1 (2) H9A—C9—H9C 109.5
C2—C3—C4 109.5 (2) H9B—C9—H9C 109.5
O1—C3—H3 109.4 O3—C10—O2 128.9 (3)
C2—C3—H3 109.4 O3—C10—C11' 117.9 (4)
C4—C3—H3 109.4 O2—C10—C11' 112.8 (4)
C3—C4—C5 113.1 (2) O3—C10—C11 112.4 (4)
C3—C4—H4A 109.0 O2—C10—C11 118.2 (4)
C5—C4—H4A 109.0 F2—C11—F1 106.4 (8)
C3—C4—H4B 109.0 F2—C11—F3 107.3 (8)
C5—C4—H4B 109.0 F1—C11—F3 102.6 (8)
H4A—C4—H4B 107.8 F2—C11—C10 112.5 (7)
C8—C5—C9 108.9 (2) F1—C11—C10 111.5 (7)
C8—C5—N1 105.4 (2) F3—C11—C10 115.7 (9)
C9—C5—N1 111.2 (2) F2'—C11'—F1' 106.0 (8)
C8—C5—C4 111.2 (2) F2'—C11'—F3' 104.8 (8)
C9—C5—C4 112.4 (2) F1'—C11'—F3' 107.9 (8)
N1—C5—C4 107.6 (2) F2'—C11'—C10 113.2 (6)
C1—C6—H6A 109.5 F1'—C11'—C10 111.2 (6)
C1—C6—H6B 109.5 F3'—C11'—C10 113.3 (8)
C5—N1—C1—C6 165.7 (2) O2—C10—C11—F2 −121.8 (8)
C5—N1—C1—C2 47.0 (3) C11'—C10—C11—F2 164 (3)
C5—N1—C1—C7 −76.9 (3) O3—C10—C11—F1 −69.1 (8)
C6—C1—C2—C3 −166.0 (2) O2—C10—C11—F1 118.7 (8)
N1—C1—C2—C3 −50.6 (3) C11'—C10—C11—F1 45 (2)
C7—C1—C2—C3 71.2 (3) O3—C10—C11—F3 174.2 (8)
C1—C2—C3—O1 179.6 (2) O2—C10—C11—F3 2.0 (11)
C1—C2—C3—C4 59.1 (3) C11'—C10—C11—F3 −72 (2)
O1—C3—C4—C5 −180.0 (2) O3—C10—C11'—F2' 25.7 (9)
C2—C3—C4—C5 −60.1 (3) O2—C10—C11'—F2' −160.6 (8)
C1—N1—C5—C8 −166.6 (2) C11—C10—C11'—F2' −47 (2)
C1—N1—C5—C9 75.6 (3) O3—C10—C11'—F1' −93.5 (8)
C1—N1—C5—C4 −47.8 (3) O2—C10—C11'—F1' 80.2 (9)
C3—C4—C5—C8 167.3 (2) C11—C10—C11'—F1' −167 (3)
C3—C4—C5—C9 −70.4 (3) O3—C10—C11'—F3' 144.8 (8)
C3—C4—C5—N1 52.4 (3) O2—C10—C11'—F3' −41.5 (10)
O3—C10—C11—F2 50.4 (9) C11—C10—C11'—F3' 72 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1B···O2 0.92 1.88 2.786 (3) 169
N1—H1A···O1i 0.92 1.96 2.869 (3) 171
O1—H1···O3ii 0.84 1.85 2.682 (3) 171

Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2664).

References

  1. Borzatta, V. & Carrozza, P. (1991). European Patent EP 0 462 069.
  2. Bruker (1997). SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Rigaku/MSC (2005). CrystalClear and CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  4. Nengfang, S., Guo, H. Z., Yin, G. & Wu, A. (2005). Acta Cryst E61, o2902–o2903.
  5. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066305/bt2664sup1.cif

e-64-0o275-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066305/bt2664Isup2.hkl

e-64-0o275-Isup2.hkl (100.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES