Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 18;64(Pt 1):o277. doi: 10.1107/S1600536807066093

4-Chloro-N-methyl-6-(morpholin-4-yl)-N-phenyl-1,3,5-triazin-2-amine

Tao Zeng a,*, Wan-Zhong Ren a, Lie-Gang Sun a
PMCID: PMC2915330  PMID: 21200842

Abstract

In the title compound, C14H16ClN5O, the phenyl and triazine rings form a dihedral angle of 69.34 (8)°. The morpholine ring adopts a chair conformation. The structure is stabilized by C—H⋯N and intermolecular C—H⋯O hydrogen-bonding inter­actions.

Related literature

For related literature, see: Cremer & Pople (1975); Dong et al. (2005); Manasek & Hrdlovik (1990); Mathias & Simanek (1994).graphic file with name e-64-0o277-scheme1.jpg

Experimental

Crystal data

  • C14H16ClN5O

  • M r = 305.77

  • Orthorhombic, Inline graphic

  • a = 17.121 (3) Å

  • b = 17.308 (3) Å

  • c = 10.0243 (17) Å

  • V = 2970.4 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 294 (2) K

  • 0.22 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.944, T max = 0.974

  • 16109 measured reflections

  • 3053 independent reflections

  • 1607 reflections with I > 2σ(I)

  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.136

  • S = 1.00

  • 3053 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066093/rz2182sup1.cif

e-64-0o277-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066093/rz2182Isup2.hkl

e-64-0o277-Isup2.hkl (149.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯N2 0.97 2.30 2.740 (3) 107
C7—H7B⋯N3 0.97 2.35 2.782 (3) 106
C10—H10⋯O1i 0.93 2.44 3.327 (4) 158

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Start Foundation for Doctors (grant No. HY071314) of Yantai University.

supplementary crystallographic information

Comment

2,4,6-Trichloro-1,3,5-triazine and its derivatives have been widely investigated, as a result of their importance as starting materials for many products. Moreover, these compounds possess valuable properties, as they are widely used as drugs and light stabilizers (Mathias & Simanek, 1994; Manasek & Hrdlovik, 1990). In the present paper, the crystal structure of the title compound, which has been synthesized from 2,4-dichloro-6-morpholin-4-yl-1,3,5-triazine and N-methylaniline, is reported.

In the title compound bond lengths and angles are within normal ranges (Table 1). The morpholine ring adopts a chair conformation with puckering parameters (Cremer and Pople, 1975) Q = 0.549 (2) Å, θ = 178.6 (2)° and φ = 121 (12)°. The dihedral angle formed by the phenyl and triazine rings is 110.66 (8)°. The molecular conformation is stabilized by two intramolecular C—H···N hydrogen bonds (Table 2). In the crystal structure, the molecules are linked by intermolecular C—H···O hydrogen interactions (Table 2).

Experimental

2,4-Dichloro-6-morpholino-1,3,5-triazine (11.75 g, 0.05 mol), which was prepared from morpholine and 2,4,6-trichloro-1,3,5-triazine according to the literature method (Dong et al., 2005), and N-methylaniline (6.15 g, 0.05 mol) were dissolved in THF (60 ml) at 323 K with stirring for 2 h. A solution of Na2CO3 (2.76 g, 0.026 mol) in water (20 ml) was then added and the mixture stirred for a further 3 h. The solution was evaporated under reduced pressure and the precipitate was filtered off to give the title compound (12.69 g; yield 81.3%). Single crystals (m.p.371–372 K) suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate/ethanol (2:5 v/v) solution.

Refinement

All the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed along the c axis.

Crystal data

C14H16ClN5O F000 = 1280
Mr = 305.77 Dx = 1.367 Mg m3
Orthorhombic, Pnna Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2a 2bc Cell parameters from 2473 reflections
a = 17.121 (3) Å θ = 2.4–22.2º
b = 17.308 (3) Å µ = 0.26 mm1
c = 10.0243 (17) Å T = 294 (2) K
V = 2970.4 (9) Å3 Block, colourless
Z = 8 0.22 × 0.20 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3053 independent reflections
Radiation source: fine-focus sealed tube 1607 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.065
T = 294(2) K θmax = 26.4º
φ and ω scans θmin = 2.4º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −21→14
Tmin = 0.944, Tmax = 0.974 k = −21→21
16109 measured reflections l = −12→12

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045   w = 1/[σ2(Fo2) + (0.062P)2 + 0.2969P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.136 (Δ/σ)max = 0.003
S = 1.00 Δρmax = 0.19 e Å3
3053 reflections Δρmin = −0.27 e Å3
192 parameters Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0011 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.07523 (4) 0.34130 (5) 1.13890 (7) 0.0763 (3)
O1 0.41747 (12) 0.45017 (12) 0.7735 (2) 0.0843 (7)
N1 0.05798 (12) 0.35026 (11) 0.8833 (2) 0.0534 (6)
N2 0.16659 (12) 0.35391 (11) 0.73300 (19) 0.0518 (5)
N3 0.18823 (13) 0.34704 (11) 0.96853 (19) 0.0523 (5)
N4 0.29091 (13) 0.35119 (12) 0.8197 (2) 0.0582 (6)
N5 0.04129 (13) 0.36020 (12) 0.65470 (19) 0.0570 (6)
C1 0.11173 (16) 0.34659 (14) 0.9766 (2) 0.0510 (6)
C2 0.09049 (15) 0.35471 (13) 0.7589 (2) 0.0491 (6)
C3 0.21311 (15) 0.35082 (13) 0.8403 (2) 0.0481 (6)
C4 0.32424 (16) 0.35968 (16) 0.6869 (3) 0.0645 (8)
H4A 0.2837 0.3533 0.6202 0.077*
H4B 0.3635 0.3202 0.6724 0.077*
C5 0.36033 (17) 0.43769 (17) 0.6733 (3) 0.0701 (8)
H5A 0.3844 0.4423 0.5861 0.084*
H5B 0.3201 0.4769 0.6802 0.084*
C6 0.38457 (18) 0.44244 (18) 0.9033 (3) 0.0780 (9)
H6A 0.3455 0.4823 0.9161 0.094*
H6B 0.4252 0.4501 0.9694 0.094*
C7 0.34768 (15) 0.36491 (15) 0.9247 (3) 0.0602 (7)
H7A 0.3874 0.3250 0.9230 0.072*
H7B 0.3221 0.3635 1.0110 0.072*
C8 0.07219 (18) 0.36424 (18) 0.5184 (3) 0.0752 (9)
H8A 0.0936 0.4147 0.5027 0.113*
H8B 0.0308 0.3546 0.4559 0.113*
H8C 0.1124 0.3261 0.5073 0.113*
C9 −0.04133 (16) 0.36926 (16) 0.6715 (2) 0.0551 (7)
C10 −0.07178 (18) 0.43669 (17) 0.7235 (3) 0.0662 (8)
H10 −0.0386 0.4762 0.7509 0.079*
C11 −0.15150 (19) 0.44530 (19) 0.7346 (3) 0.0780 (9)
H11 −0.1721 0.4905 0.7703 0.094*
C12 −0.20090 (18) 0.3871 (2) 0.6931 (3) 0.0766 (9)
H12 −0.2547 0.3929 0.7009 0.092*
C13 −0.17014 (19) 0.32093 (18) 0.6404 (3) 0.0698 (8)
H13 −0.2034 0.2819 0.6116 0.084*
C14 −0.09104 (17) 0.31129 (16) 0.6294 (3) 0.0609 (7)
H14 −0.0708 0.2659 0.5937 0.073*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0725 (5) 0.1138 (7) 0.0427 (4) −0.0041 (4) 0.0069 (3) 0.0068 (4)
O1 0.0782 (14) 0.0923 (16) 0.0824 (15) −0.0245 (12) −0.0001 (13) 0.0206 (12)
N1 0.0602 (14) 0.0568 (14) 0.0432 (12) −0.0043 (11) −0.0018 (11) 0.0057 (10)
N2 0.0591 (14) 0.0527 (14) 0.0435 (12) −0.0033 (11) 0.0008 (11) 0.0012 (9)
N3 0.0590 (15) 0.0578 (14) 0.0401 (12) −0.0032 (11) 0.0019 (10) 0.0050 (10)
N4 0.0584 (15) 0.0670 (15) 0.0492 (13) −0.0053 (12) 0.0052 (11) −0.0005 (10)
N5 0.0653 (15) 0.0653 (15) 0.0405 (12) −0.0033 (11) −0.0040 (11) 0.0007 (10)
C1 0.0616 (19) 0.0485 (15) 0.0430 (14) −0.0034 (13) 0.0038 (13) 0.0039 (12)
C2 0.0635 (18) 0.0423 (15) 0.0416 (14) −0.0059 (12) −0.0014 (13) 0.0013 (11)
C3 0.0541 (17) 0.0392 (15) 0.0511 (16) −0.0017 (12) 0.0043 (13) 0.0019 (11)
C4 0.0618 (18) 0.072 (2) 0.0596 (17) −0.0030 (15) 0.0131 (14) −0.0008 (14)
C5 0.072 (2) 0.073 (2) 0.0651 (19) 0.0081 (17) 0.0117 (16) 0.0175 (15)
C6 0.079 (2) 0.079 (2) 0.076 (2) −0.0142 (17) −0.0108 (18) 0.0022 (17)
C7 0.0547 (16) 0.0635 (18) 0.0623 (18) 0.0032 (14) −0.0021 (14) 0.0108 (13)
C8 0.085 (2) 0.097 (2) 0.0429 (15) −0.0017 (17) 0.0013 (15) −0.0017 (15)
C9 0.0629 (18) 0.0592 (18) 0.0432 (15) −0.0050 (15) −0.0104 (13) 0.0061 (12)
C10 0.076 (2) 0.0608 (19) 0.0621 (17) −0.0039 (16) −0.0125 (16) −0.0028 (14)
C11 0.073 (2) 0.080 (2) 0.081 (2) 0.0114 (18) −0.0085 (18) −0.0052 (17)
C12 0.060 (2) 0.095 (3) 0.074 (2) 0.0002 (19) −0.0110 (16) 0.0061 (19)
C13 0.077 (2) 0.070 (2) 0.0625 (18) −0.0112 (16) −0.0200 (16) 0.0075 (15)
C14 0.070 (2) 0.0589 (18) 0.0542 (16) −0.0014 (15) −0.0142 (14) 0.0037 (13)

Geometric parameters (Å, °)

Cl1—C1 1.745 (2) C6—C7 1.498 (4)
O1—C5 1.419 (3) C6—H6A 0.9700
O1—C6 1.424 (3) C6—H6B 0.9700
N1—C1 1.314 (3) C7—H7A 0.9700
N1—C2 1.368 (3) C7—H7B 0.9700
N2—C2 1.328 (3) C8—H8A 0.9600
N2—C3 1.339 (3) C8—H8B 0.9600
N3—C1 1.312 (3) C8—H8C 0.9600
N3—C3 1.356 (3) C9—C10 1.380 (4)
N4—C3 1.348 (3) C9—C14 1.382 (4)
N4—C7 1.452 (3) C10—C11 1.377 (4)
N4—C4 1.456 (3) C10—H10 0.9300
N5—C2 1.345 (3) C11—C12 1.379 (4)
N5—C9 1.433 (3) C11—H11 0.9300
N5—C8 1.467 (3) C12—C13 1.367 (4)
C4—C5 1.491 (4) C12—H12 0.9300
C4—H4A 0.9700 C13—C14 1.369 (4)
C4—H4B 0.9700 C13—H13 0.9300
C5—H5A 0.9700 C14—H14 0.9300
C5—H5B 0.9700
C5—O1—C6 111.1 (2) O1—C6—H6B 109.1
C1—N1—C2 111.5 (2) C7—C6—H6B 109.1
C2—N2—C3 115.3 (2) H6A—C6—H6B 107.8
C1—N3—C3 111.9 (2) N4—C7—C6 109.0 (2)
C3—N4—C7 123.5 (2) N4—C7—H7A 109.9
C3—N4—C4 121.8 (2) C6—C7—H7A 109.9
C7—N4—C4 112.6 (2) N4—C7—H7B 109.9
C2—N5—C9 122.3 (2) C6—C7—H7B 109.9
C2—N5—C8 120.0 (2) H7A—C7—H7B 108.3
C9—N5—C8 117.4 (2) N5—C8—H8A 109.5
N3—C1—N1 130.9 (2) N5—C8—H8B 109.5
N3—C1—Cl1 114.54 (19) H8A—C8—H8B 109.5
N1—C1—Cl1 114.6 (2) N5—C8—H8C 109.5
N2—C2—N5 117.6 (2) H8A—C8—H8C 109.5
N2—C2—N1 125.2 (2) H8B—C8—H8C 109.5
N5—C2—N1 117.2 (2) C10—C9—C14 119.8 (3)
N2—C3—N4 117.7 (2) C10—C9—N5 120.6 (3)
N2—C3—N3 125.2 (2) C14—C9—N5 119.5 (3)
N4—C3—N3 117.1 (2) C11—C10—C9 119.8 (3)
N4—C4—C5 109.7 (2) C11—C10—H10 120.1
N4—C4—H4A 109.7 C9—C10—H10 120.1
C5—C4—H4A 109.7 C10—C11—C12 120.3 (3)
N4—C4—H4B 109.7 C10—C11—H11 119.9
C5—C4—H4B 109.7 C12—C11—H11 119.9
H4A—C4—H4B 108.2 C13—C12—C11 119.5 (3)
O1—C5—C4 111.0 (2) C13—C12—H12 120.3
O1—C5—H5A 109.4 C11—C12—H12 120.3
C4—C5—H5A 109.4 C12—C13—C14 121.0 (3)
O1—C5—H5B 109.4 C12—C13—H13 119.5
C4—C5—H5B 109.4 C14—C13—H13 119.5
H5A—C5—H5B 108.0 C13—C14—C9 119.8 (3)
O1—C6—C7 112.4 (2) C13—C14—H14 120.1
O1—C6—H6A 109.1 C9—C14—H14 120.1
C7—C6—H6A 109.1
C3—N3—C1—N1 −1.1 (4) C3—N4—C4—C5 108.2 (3)
C3—N3—C1—Cl1 179.70 (16) C7—N4—C4—C5 −55.8 (3)
C2—N1—C1—N3 0.5 (4) C6—O1—C5—C4 −58.0 (3)
C2—N1—C1—Cl1 179.67 (16) N4—C4—C5—O1 56.6 (3)
C3—N2—C2—N5 178.0 (2) C5—O1—C6—C7 57.5 (3)
C3—N2—C2—N1 −2.1 (3) C3—N4—C7—C6 −109.5 (3)
C9—N5—C2—N2 −173.7 (2) C4—N4—C7—C6 54.2 (3)
C8—N5—C2—N2 0.6 (3) O1—C6—C7—N4 −54.6 (3)
C9—N5—C2—N1 6.4 (3) C2—N5—C9—C10 68.3 (3)
C8—N5—C2—N1 −179.3 (2) C8—N5—C9—C10 −106.2 (3)
C1—N1—C2—N2 1.3 (3) C2—N5—C9—C14 −114.8 (3)
C1—N1—C2—N5 −178.8 (2) C8—N5—C9—C14 70.8 (3)
C2—N2—C3—N4 −178.9 (2) C14—C9—C10—C11 0.8 (4)
C2—N2—C3—N3 1.3 (3) N5—C9—C10—C11 177.8 (2)
C7—N4—C3—N2 166.1 (2) C9—C10—C11—C12 −0.5 (4)
C4—N4—C3—N2 3.9 (3) C10—C11—C12—C13 −0.2 (5)
C7—N4—C3—N3 −14.1 (3) C11—C12—C13—C14 0.6 (4)
C4—N4—C3—N3 −176.3 (2) C12—C13—C14—C9 −0.3 (4)
C1—N3—C3—N2 0.1 (3) C10—C9—C14—C13 −0.5 (4)
C1—N3—C3—N4 −179.6 (2) N5—C9—C14—C13 −177.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4A···N2 0.97 2.30 2.740 (3) 107
C7—H7B···N3 0.97 2.35 2.782 (3) 106
C10—H10···O1i 0.93 2.44 3.327 (4) 158

Symmetry codes: (i) −x+1/2, −y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2182).

References

  1. Bruker (1997). SMART, SAINT and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  3. Dong, C.-M., Chen, L.-G., Duan, X.-M., Shu, X.-G., Zeng, T. & Yan, X.-L. (2005). Acta Cryst. E61, o1168–o1169.
  4. Manasek, Z. & Hrdlovik, P. (1990). European Patent EP 0377324.
  5. Mathias, P. J. & Simanek, E. E. (1994). J. Am. Chem. Soc.116, 4326–4340.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066093/rz2182sup1.cif

e-64-0o277-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066093/rz2182Isup2.hkl

e-64-0o277-Isup2.hkl (149.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES