Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 18;64(Pt 1):o279. doi: 10.1107/S1600536807065701

4-[4-(Methyl­sulfan­yl)phen­yl]-6-phenyl-2,2′-bipyridine

Matthew I J Polson a,*, Franco Scandola b, Peter J Steel a
PMCID: PMC2915332  PMID: 21200844

Abstract

The structure of the title compound, C23H18N2S, is revealed by X-ray diffraction to be almost planar over all four aromatic rings; the pendant rings are at angles of 10.18, 14.12 and 15.42° relative to the central pyridine ring for the 4-methylsulfanyl, 2-pyridyl and 6-phenyl rings, respectively. The 2,6-aromatic substituents are disordered over two sites in a 0.6:0.4 occupancy ratio.

Related literature

For related literature, see: Fitchett et al. (2005).graphic file with name e-64-0o279-scheme1.jpg

Experimental

Crystal data

  • C23H18N2S

  • M r = 354.45

  • Monoclinic, Inline graphic

  • a = 19.189 (3) Å

  • b = 5.3617 (8) Å

  • c = 17.084 (3) Å

  • β = 92.262 (9)°

  • V = 1756.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 93 (2) K

  • 0.45 × 0.17 × 0.04 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.599, T max = 0.992

  • 19871 measured reflections

  • 3118 independent reflections

  • 1442 reflections with I > 2σ(I)

  • R int = 0.121

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.161

  • S = 0.93

  • 3118 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Version 1.08; Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807065701/ww2105sup1.cif

e-64-0o279-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065701/ww2105Isup2.hkl

e-64-0o279-Isup2.hkl (153KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Foundation of Research Science and Technology for funding. FS also thanks the EC for funding (grant G5RD-CT-2002-00776, MWFM) and PJS also thanks the Royal Society of New Zealand for the award of a James Cook Research Fellowship.

supplementary crystallographic information

Comment

The use of Self Assemblied Monolayers (SAMs) in the fabrication of molecular devices is a rapidly expanding field. To incorporate the useful photophysical properties of iridium complexes into a SAM, ligands must be capable of attaching to a surface. The compound (1), a bipyridine based ligand, includes a protected thiol group for attachment to a gold surface and a phenyl group for cyclometallation. Typically bipyridine ligands crystallize with the pyridine N atoms in a s-trans arrangement (Fitchett et al., 2005). This is attributed to reduction of C—H/H—C interactions. Here, the pyridine ring and the phenyl ring crystallize in identical conformations, leading to disorder. If C—H/H—C interactions were the dominant force for the arrangement of the ring, one would expect the phenyl ring to adopt a different arrangement due to the additional interaction. This implies that the dominant force for the arrangement of the rings is the attractive C—H/N interaction.

Experimental

To a solution of 4-(methylsulfanyl)benzaldehyde (5 g), acetophenone (4.5 g), methanol (300 ml) and ammonia (0.81 g/ml, 50 ml) was added a sodium hydroxide solution (1.5 g in 50 ml water) with stirring. Overnight a precipitate of the condensation product formed. This was filtered, air dried and was used in the next step without further purification. This compound (5 g) was ground in a mortar and pestle with 2-acetylpyridine (2.5 g) and sodium hydroxide (0.83 g) until the mixture became a solid again. Excess ammonium hydroxide was added and the mixture dissolved in glacial acetic acid (50 ml) and was refluxed with stirring for 4 h. On cooling, the solution was poured into water (200 ml) and extracted with dichloromethane (3 x 50 ml). Chromatography on silica gel with dichloromethane/methanol (95:5) yielded the pure product (1). Single crystals suitable for X-ray diffraction formed on slow evaporation from dichloromethane solution. Yield = 2.3 g (25%). Spectroscopic data: 1H NMR (CDCl3): δ 2.54 (3H, s, CH3S), 7.35 (1H, ddd, py5'), 7.37 (2H, d, thio-ph3,5), 7.46 (1H, t, ph4), 7.53 (2H, dd, thio-ph2,6), 7.77 (2H, d, ph3,5), 7.87 (1H, td, py4'), 7.95 (1H, d, py5), 8.20 (2H, d, ph2,6), 8.63 (1H, d, py3), 8.68 (1H, d, py3'), 8.72 (1H, dd, py6'); 13C NMR (CDCl3): δ 15.5, 117.1, 118.1, 121.6, 123.9, 126.5, 127.1, 127.5, 128.7, 129.1, 135.0, 137.1, 139.4, 140.1, 148.8, 149.5, 156.0, 156.2, 157.2.

Refinement

The 2-pyridine and 6-phenyl rings are disordered in a 60/40 ratio over the two possible positions. The pyridine ring however always adopts a s-trans arrangement to the central pyridine nitrogen, presumably to minimize hydrogen/hydrogen repulsions.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (1), showing displacement ellipsoids at the 50% probability level.

Crystal data

C23H18N2S F000 = 744
Mr = 354.45 Dx = 1.341 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1819 reflections
a = 19.189 (3) Å θ = 2.7–25.9º
b = 5.3617 (8) Å µ = 0.19 mm1
c = 17.084 (3) Å T = 93 (2) K
β = 92.262 (9)º Plate, yellow
V = 1756.3 (5) Å3 0.45 × 0.17 × 0.04 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 3118 independent reflections
Radiation source: sealed tube 1442 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.121
T = 93(2) K θmax = 25.1º
φ and ω scans θmin = 2.4º
Absorption correction: multi-scan(SADABS; Bruker, 2007) h = −22→22
Tmin = 0.599, Tmax = 0.992 k = −6→6
19871 measured reflections l = −20→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063 H-atom parameters constrained
wR(F2) = 0.161   w = 1/[σ2(Fo2) + (0.0562P)2 + 0.5007P] where P = (Fo2 + 2Fc2)/3
S = 0.93 (Δ/σ)max < 0.001
3118 reflections Δρmax = 0.50 e Å3
236 parameters Δρmin = −0.35 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C10 0.7765 (2) 0.5910 (7) 0.4911 (2) 0.0262 (10)
C11 0.8384 (2) 0.6255 (8) 0.5330 (3) 0.0467 (13)
H11 0.8788 0.5333 0.5204 0.056*
C12 0.8411 (2) 0.7978 (9) 0.5941 (3) 0.0575 (15)
H12 0.8832 0.8205 0.6245 0.069*
C13 0.7843 (2) 0.9318 (8) 0.6101 (2) 0.0383 (11)
H13 0.7862 1.0516 0.6511 0.046*
C14 0.7242 (2) 0.8947 (9) 0.5672 (3) 0.0440 (12)
H14 0.6839 0.9883 0.5792 0.053*
N15 0.71985 (18) 0.7258 (8) 0.5069 (2) 0.0428 (10) 0.60
C15 0.71985 (18) 0.7258 (8) 0.5069 (2) 0.0428 (10) 0.40
H15 0.6775 0.7046 0.4769 0.051* 0.40
N20 0.82507 (15) 0.2544 (7) 0.41731 (17) 0.0296 (8)
C20 0.7730 (2) 0.4149 (8) 0.4222 (2) 0.0278 (10)
C21 0.7176 (2) 0.4300 (8) 0.3674 (2) 0.0300 (10)
H21 0.6811 0.5471 0.3741 0.036*
C22 0.71595 (19) 0.2711 (8) 0.3022 (2) 0.0269 (9)
C23 0.7708 (2) 0.1064 (8) 0.2974 (2) 0.0322 (11)
H23 0.7720 −0.0040 0.2540 0.039*
C24 0.8246 (2) 0.0983 (8) 0.3549 (2) 0.0314 (10)
C30 0.8832 (2) −0.0776 (8) 0.3508 (2) 0.0306 (10)
C31 0.9434 (2) −0.0504 (9) 0.3971 (3) 0.0453 (13)
H31 0.9469 0.0856 0.4327 0.054*
C32 0.9981 (3) −0.2125 (10) 0.3934 (3) 0.0545 (14)
H32 1.0387 −0.1896 0.4262 0.065*
C33 0.9939 (2) −0.4123 (9) 0.3407 (3) 0.0454 (13)
H33 1.0314 −0.5261 0.3361 0.054*
C34 0.9338 (2) −0.4371 (9) 0.2964 (3) 0.0441 (12)
H34 0.9297 −0.5751 0.2617 0.053*
N35 0.87914 (19) −0.2752 (8) 0.2989 (2) 0.0354 (10) 0.40
C35 0.87914 (19) −0.2752 (8) 0.2989 (2) 0.0354 (10) 0.60
H35 0.8389 −0.2979 0.2655 0.042* 0.60
C40 0.65707 (19) 0.2792 (8) 0.2432 (2) 0.0283 (10)
C41 0.6070 (2) 0.4625 (8) 0.2429 (2) 0.0380 (11)
H41 0.6118 0.5930 0.2803 0.046*
C42 0.5494 (2) 0.4669 (8) 0.1906 (2) 0.0393 (12)
H42 0.5163 0.5981 0.1928 0.047*
C43 0.54081 (19) 0.2767 (8) 0.1349 (2) 0.0302 (10)
C44 0.5919 (2) 0.0955 (9) 0.1327 (3) 0.0442 (12)
H44 0.5880 −0.0321 0.0943 0.053*
C45 0.6486 (2) 0.0961 (8) 0.1857 (3) 0.0411 (12)
H45 0.6827 −0.0318 0.1826 0.049*
S40 0.46881 (5) 0.2541 (2) 0.06834 (6) 0.0347 (3)
C46 0.4188 (2) 0.5257 (8) 0.0889 (2) 0.0422 (12)
H46A 0.4083 0.5279 0.1446 0.063*
H46B 0.3752 0.5232 0.0571 0.063*
H46C 0.4456 0.6752 0.0763 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C10 0.032 (2) 0.030 (2) 0.016 (2) −0.001 (2) 0.0034 (18) 0.005 (2)
C11 0.048 (3) 0.050 (3) 0.041 (3) 0.015 (2) −0.006 (2) −0.015 (3)
C12 0.056 (3) 0.071 (4) 0.044 (3) 0.019 (3) −0.024 (2) −0.021 (3)
C13 0.052 (3) 0.043 (3) 0.019 (3) 0.003 (2) −0.004 (2) −0.007 (2)
C14 0.046 (3) 0.050 (3) 0.037 (3) 0.014 (2) 0.004 (2) −0.019 (3)
N15 0.043 (2) 0.058 (3) 0.028 (2) 0.007 (2) −0.0014 (17) −0.019 (2)
C15 0.043 (2) 0.058 (3) 0.028 (2) 0.007 (2) −0.0014 (17) −0.019 (2)
N20 0.0384 (19) 0.037 (2) 0.0137 (18) 0.003 (2) 0.0057 (14) 0.0044 (19)
C20 0.037 (2) 0.034 (3) 0.012 (2) 0.001 (2) 0.0076 (19) 0.002 (2)
C21 0.042 (3) 0.029 (3) 0.019 (2) 0.000 (2) 0.002 (2) 0.001 (2)
C22 0.039 (2) 0.029 (2) 0.013 (2) −0.002 (2) 0.0067 (17) 0.004 (2)
C23 0.048 (3) 0.036 (3) 0.013 (2) −0.002 (2) 0.003 (2) −0.001 (2)
C24 0.043 (3) 0.029 (3) 0.022 (3) −0.002 (2) 0.006 (2) 0.005 (2)
C30 0.039 (3) 0.037 (3) 0.016 (2) 0.003 (2) 0.0086 (19) 0.006 (2)
C31 0.056 (3) 0.056 (3) 0.024 (3) 0.013 (3) 0.001 (2) −0.003 (2)
C32 0.064 (3) 0.071 (4) 0.029 (3) 0.018 (3) 0.000 (2) 0.007 (3)
C33 0.056 (3) 0.046 (3) 0.035 (3) 0.012 (3) 0.011 (2) 0.013 (3)
C34 0.062 (3) 0.040 (3) 0.032 (3) 0.003 (3) 0.018 (3) −0.003 (2)
N35 0.048 (2) 0.036 (2) 0.023 (2) 0.006 (2) 0.0093 (18) 0.000 (2)
C35 0.048 (2) 0.036 (2) 0.023 (2) 0.006 (2) 0.0093 (18) 0.000 (2)
C40 0.039 (2) 0.031 (3) 0.016 (2) −0.005 (2) 0.0059 (17) 0.003 (2)
C41 0.053 (3) 0.045 (3) 0.016 (3) 0.005 (2) −0.002 (2) −0.010 (2)
C42 0.055 (3) 0.041 (3) 0.022 (3) 0.012 (2) 0.001 (2) −0.007 (2)
C43 0.038 (2) 0.029 (3) 0.024 (2) −0.005 (2) 0.0013 (18) 0.004 (2)
C44 0.056 (3) 0.040 (3) 0.036 (3) 0.006 (3) −0.008 (2) −0.011 (2)
C45 0.052 (3) 0.034 (3) 0.037 (3) 0.010 (2) −0.004 (2) −0.009 (2)
S40 0.0459 (6) 0.0359 (6) 0.0222 (6) −0.0007 (6) −0.0005 (4) −0.0047 (6)
C46 0.049 (3) 0.053 (3) 0.024 (3) 0.009 (2) −0.003 (2) −0.003 (2)

Geometric parameters (Å, °)

C10—N15 1.342 (5) C31—C32 1.367 (6)
C10—C11 1.374 (5) C31—H31 0.9500
C10—C20 1.509 (5) C32—C33 1.399 (6)
C11—C12 1.394 (6) C32—H32 0.9500
C11—H11 0.9500 C33—C34 1.360 (6)
C12—C13 1.343 (6) C33—H33 0.9500
C12—H12 0.9500 C34—N35 1.364 (5)
C13—C14 1.357 (5) C34—H34 0.9500
C13—H13 0.9500 C40—C41 1.375 (5)
C14—N15 1.371 (5) C40—C45 1.393 (5)
C14—H14 0.9500 C41—C42 1.392 (5)
N20—C20 1.324 (5) C41—H41 0.9500
N20—C24 1.355 (5) C42—C43 1.401 (6)
C20—C21 1.391 (5) C42—H42 0.9500
C21—C22 1.402 (5) C43—C44 1.381 (6)
C21—H21 0.9500 C43—S40 1.758 (4)
C22—C23 1.378 (5) C44—C45 1.388 (6)
C22—C40 1.485 (5) C44—H44 0.9500
C23—C24 1.398 (5) C45—H45 0.9500
C23—H23 0.9500 S40—C46 1.787 (4)
C24—C30 1.472 (5) C46—H46A 0.9800
C30—C31 1.380 (6) C46—H46B 0.9800
C30—N35 1.382 (5) C46—H46C 0.9800
N15—C10—C11 120.9 (4) C30—C31—H31 118.9
N15—C10—C20 118.8 (4) C31—C32—C33 119.5 (5)
C11—C10—C20 120.1 (4) C31—C32—H32 120.3
C10—C11—C12 119.0 (4) C33—C32—H32 120.3
C10—C11—H11 120.5 C34—C33—C32 117.3 (5)
C12—C11—H11 120.5 C34—C33—H33 121.3
C13—C12—C11 120.1 (4) C32—C33—H33 121.3
C13—C12—H12 120.0 C33—C34—N35 123.8 (5)
C11—C12—H12 120.0 C33—C34—H34 118.1
C12—C13—C14 119.4 (4) N35—C34—H34 118.1
C12—C13—H13 120.3 C34—N35—C30 118.9 (4)
C14—C13—H13 120.3 C41—C40—C45 116.1 (4)
C13—C14—N15 121.8 (4) C41—C40—C22 122.4 (4)
C13—C14—H14 119.1 C45—C40—C22 121.5 (4)
N15—C14—H14 119.1 C40—C41—C42 123.4 (4)
C10—N15—C14 118.8 (4) C40—C41—H41 118.3
C20—N20—C24 117.9 (3) C42—C41—H41 118.3
N20—C20—C21 123.7 (4) C41—C42—C43 119.5 (4)
N20—C20—C10 116.4 (3) C41—C42—H42 120.2
C21—C20—C10 119.9 (4) C43—C42—H42 120.2
C20—C21—C22 119.4 (4) C44—C43—C42 117.7 (4)
C20—C21—H21 120.3 C44—C43—S40 118.3 (3)
C22—C21—H21 120.3 C42—C43—S40 123.9 (3)
C23—C22—C21 116.4 (3) C43—C44—C45 121.4 (4)
C23—C22—C40 122.7 (4) C43—C44—H44 119.3
C21—C22—C40 120.9 (4) C45—C44—H44 119.3
C22—C23—C24 121.5 (4) C44—C45—C40 121.8 (4)
C22—C23—H23 119.3 C44—C45—H45 119.1
C24—C23—H23 119.3 C40—C45—H45 119.1
N20—C24—C23 121.1 (4) C43—S40—C46 103.4 (2)
N20—C24—C30 116.8 (4) S40—C46—H46A 109.5
C23—C24—C30 122.1 (4) S40—C46—H46B 109.5
C31—C30—N35 118.2 (4) H46A—C46—H46B 109.5
C31—C30—C24 121.9 (4) S40—C46—H46C 109.5
N35—C30—C24 119.8 (4) H46A—C46—H46C 109.5
C32—C31—C30 122.2 (5) H46B—C46—H46C 109.5
C32—C31—H31 118.9

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2105).

References

  1. Bruker (2007). APEX2 (Version 2.1-4), SAINT (Version 7.34A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Fitchett, C. M., Richardson, C. & Steel, P. J. (2005). Org. Biomol. Chem.3, 498–502. [DOI] [PubMed]
  4. Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
  5. Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany.
  6. Westrip, S. P. (2008). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807065701/ww2105sup1.cif

e-64-0o279-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065701/ww2105Isup2.hkl

e-64-0o279-Isup2.hkl (153KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES