Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 18;64(Pt 1):o291. doi: 10.1107/S160053680706641X

2-[(1S,3S)-3-Acetyl-2,2-dimethyl­cyclo­butyl]-N-(m-tol­yl)acetamide

Yan-Bai Yin a, Zhan-Qian Song a,*, Zong-De Wang b, Shi-Bin Shang a
PMCID: PMC2915342  PMID: 21200856

Abstract

The title compound, C17H23NO2, contains two chiral centres and was synthesized from 2-(3-acetyl-2,2-dimethyl­cyclo­butyl)acetic acid and m-toluidine. The cyclobutane ring is not flat but flexed as though folded from the dimethyl-substituted C atom to the unsubstituted C atom, with a dihedral angle of 25.9°. The crystal structure is stabilized by N—H⋯O and C—H⋯O hydrogen-bonding inter­actions.

Related literature

For related literature, see: Mitra & Khanra (1977); Yin et al. (2007).graphic file with name e-64-0o291-scheme1.jpg

Experimental

Crystal data

  • C17H23NO2

  • M r = 273.36

  • Orthorhombic, Inline graphic

  • a = 12.513 (3) Å

  • b = 9.5190 (19) Å

  • c = 26.844 (5) Å

  • V = 3197.4 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.40 × 0.20 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.951, T max = 0.975

  • 3150 measured reflections

  • 3120 independent reflections

  • 1385 reflections with I > 2σ(I)

  • R int = 0.032

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.073

  • wR(F 2) = 0.170

  • S = 1.04

  • 3120 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a ); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a ); molecular graphics: SHELXTL (Sheldrick, 1997b ); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680706641X/at2522sup1.cif

e-64-0o291-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706641X/at2522Isup2.hkl

e-64-0o291-Isup2.hkl (153.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O2i 0.86 2.04 2.892 (4) 169
C12—H12A⋯O2 0.93 2.49 2.931 (5) 109
C13—H13A⋯O1ii 0.93 2.55 3.440 (5) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Key Technology R&D Programme of China under grant No. 2006BAD06B10.

supplementary crystallographic information

Comment

Terpenes are convenient chiral precursors due to their availability and low cost, and among them, a-pinene (both enantiomers) and verbenone are prominent. For instance, pinene has been used as starting material for the production of some compounds of industrial interest (Mitra & Khanra, 1977). Chiral cyclobutane compound, pinonic acid, can be synthesized from a-pinene. Many derivatives of pinonic acid have interesting biological properties. So we synthesized several derivatives of pinonic acid. In our previous paper we have reported the crystal structure of 2-[(1S,3S)-3-acetyl-2,2-dimethylcyclobutyl]-N-(2,6-difluorophenyl) acetamide (Yin et al., 2007). Now we synthesized the title compound (I) and report here its crystal structure.

The molecular structure of (I) is shown in Fig. 1. A l l bond lengths and angles are normal. The crystal structure is stabilized by N—H···O and C—H···O hydrogen bonding interactions (Table 1).

Experimental

The title compound was synthesized from m-toluidine and 2-(3-acetyl-2,2-dimethylcyclobutyl) acetyl chloride at room temperature. The acetyl chloride was obtained using 2-(3-acetyl-2,2-dimethylcyclobutyl)acetic acid (pinonic acid), thionyl chloride as raw materials and dichloromethane as solvent. Pinonic acid (27 mmol) and thionyl chloride (32 mmol) were dissolved in dichloromethane (50 ml). The resulting mixture was refluxed for 8 h. After refluxing the solvent was distilled away under vacuum and the remainder was 2-(3-acetyl-2,2-dimethylcyclobutyl)acetyl chloride. The acetyl chloride reacted with m-toluidine (27 mmol) for 24 h using dichloromethane as solvent. After the reaction was complete the solvent was distilled away and the crude title compound was gained. The pure compound was obtained by crystallizing from a mixture of ethanol (40 ml) and water (40 ml). Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement

All H atoms were placed geometrically, with the C—H distances in the range 0.93–0.98 Å and N—H = 0.86 Å, and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq(H) of the carrier atom.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of (I), showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the packing and N—H···O hydrogen bondings (dash lines) of the title compound.

Crystal data

C17H23NO2 Dx = 1.136 Mg m3
Mr = 273.36 Melting point: 367 K
Orthorhombic, Pbca Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 25 reflections
a = 12.513 (3) Å θ = 8–13º
b = 9.5190 (19) Å µ = 0.07 mm1
c = 26.844 (5) Å T = 293 (2) K
V = 3197.4 (11) Å3 Quadrate, colourless
Z = 8 0.40 × 0.20 × 0.20 mm
F000 = 1184

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.032
Radiation source: fine-focus sealed tube θmax = 26.0º
Monochromator: graphite θmin = 1.5º
T = 293(2) K h = 0→15
ω/2θ scans k = 0→11
Absorption correction: ψ scan(North et al., 1968) l = 0→32
Tmin = 0.951, Tmax = 0.975 3 standard reflections
3150 measured reflections every 200 reflections
3120 independent reflections intensity decay: none
1385 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073 H-atom parameters constrained
wR(F2) = 0.170   w = 1/[σ2(Fo2) + (0.05P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3120 reflections Δρmax = 0.14 e Å3
181 parameters Δρmin = −0.14 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N 0.7095 (2) 0.0658 (3) 0.68825 (10) 0.0721 (8)
H0A 0.7277 −0.0171 0.6977 0.087*
O1 0.6178 (2) −0.0407 (3) 0.92753 (10) 0.1064 (9)
C1 0.4701 (3) 0.1175 (5) 0.93668 (16) 0.1272 (16)
H1A 0.4414 0.0449 0.9576 0.191*
H1B 0.4227 0.1333 0.9091 0.191*
H1C 0.4774 0.2026 0.9556 0.191*
O2 0.7021 (2) 0.2940 (2) 0.71316 (9) 0.0883 (8)
C2 0.5782 (3) 0.0728 (4) 0.91735 (14) 0.0830 (11)
C3 0.6333 (3) 0.1758 (3) 0.88408 (12) 0.0684 (9)
H3A 0.6270 0.2708 0.8978 0.082*
C4 0.5977 (3) 0.1749 (3) 0.82785 (11) 0.0643 (9)
C5 0.7192 (2) 0.1983 (3) 0.81526 (11) 0.0642 (8)
H5A 0.7331 0.2993 0.8128 0.077*
C6 0.7475 (3) 0.1488 (4) 0.86728 (11) 0.0777 (10)
H6A 0.7682 0.0507 0.8688 0.093*
H6B 0.7999 0.2077 0.8838 0.093*
C7 0.5230 (3) 0.2938 (4) 0.81276 (14) 0.1015 (13)
H7A 0.4510 0.2698 0.8216 0.152*
H7B 0.5274 0.3081 0.7774 0.152*
H7C 0.5435 0.3784 0.8297 0.152*
C8 0.5565 (3) 0.0333 (3) 0.81108 (12) 0.0782 (10)
H8A 0.4824 0.0246 0.8197 0.117*
H8B 0.5966 −0.0397 0.8272 0.117*
H8C 0.5645 0.0249 0.7756 0.117*
C9 0.7689 (3) 0.1250 (3) 0.77045 (12) 0.0771 (10)
H9A 0.8452 0.1427 0.7705 0.092*
H9B 0.7584 0.0245 0.7738 0.092*
C10 0.7236 (3) 0.1716 (3) 0.72154 (12) 0.0662 (9)
C11 0.6677 (3) 0.0789 (3) 0.63926 (13) 0.0650 (9)
C12 0.5888 (3) 0.1753 (3) 0.62739 (16) 0.0855 (11)
H12A 0.5602 0.2353 0.6513 0.103*
C13 0.5545 (3) 0.1783 (4) 0.57870 (19) 0.1012 (13)
H13A 0.5033 0.2443 0.5698 0.121*
C14 0.5914 (3) 0.0904 (4) 0.54333 (16) 0.0931 (12)
H14A 0.5657 0.0978 0.5109 0.112*
C15 0.6686 (3) −0.0127 (4) 0.55487 (14) 0.0801 (10)
C16 0.7049 (3) −0.0140 (3) 0.60417 (13) 0.0723 (9)
H16A 0.7559 −0.0800 0.6135 0.087*
C17 0.7134 (3) −0.1128 (5) 0.51691 (14) 0.1146 (14)
H17A 0.6788 −0.0977 0.4854 0.172*
H17B 0.7011 −0.2077 0.5276 0.172*
H17C 0.7888 −0.0971 0.5134 0.172*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N 0.088 (2) 0.0515 (15) 0.077 (2) 0.0067 (14) 0.0022 (16) 0.0046 (15)
O1 0.115 (2) 0.099 (2) 0.105 (2) −0.0141 (18) −0.0003 (17) 0.0199 (17)
C1 0.085 (3) 0.175 (4) 0.122 (4) −0.020 (3) 0.026 (3) −0.006 (3)
O2 0.124 (2) 0.0526 (14) 0.0881 (17) −0.0010 (13) 0.0038 (15) 0.0082 (12)
C2 0.102 (3) 0.079 (2) 0.068 (2) −0.015 (2) −0.003 (2) −0.007 (2)
C3 0.078 (2) 0.0583 (18) 0.069 (2) −0.0117 (18) 0.0023 (18) −0.0043 (17)
C4 0.074 (2) 0.0616 (19) 0.057 (2) −0.0020 (17) −0.0052 (17) 0.0061 (16)
C5 0.063 (2) 0.0605 (19) 0.070 (2) −0.0078 (16) 0.0058 (17) 0.0026 (17)
C6 0.067 (2) 0.092 (2) 0.074 (2) −0.0174 (18) −0.0040 (19) 0.006 (2)
C7 0.097 (3) 0.098 (3) 0.110 (3) 0.025 (2) 0.002 (2) 0.015 (2)
C8 0.077 (2) 0.081 (2) 0.077 (2) −0.0201 (19) −0.0042 (19) 0.0009 (19)
C9 0.080 (2) 0.072 (2) 0.079 (2) 0.0042 (18) 0.008 (2) 0.0053 (19)
C10 0.078 (2) 0.0522 (19) 0.069 (2) 0.0044 (18) 0.0147 (18) 0.0129 (19)
C11 0.067 (2) 0.0499 (18) 0.079 (2) −0.0047 (16) 0.0074 (19) 0.0102 (19)
C12 0.084 (3) 0.059 (2) 0.113 (3) 0.013 (2) 0.001 (2) −0.003 (2)
C13 0.090 (3) 0.096 (3) 0.117 (4) 0.002 (3) −0.022 (3) 0.011 (3)
C14 0.088 (3) 0.090 (3) 0.101 (3) −0.015 (2) −0.025 (2) 0.014 (3)
C15 0.085 (3) 0.085 (3) 0.071 (3) −0.012 (2) 0.003 (2) 0.000 (2)
C16 0.074 (2) 0.068 (2) 0.075 (2) 0.0018 (19) 0.012 (2) 0.006 (2)
C17 0.109 (3) 0.153 (4) 0.081 (3) 0.001 (3) 0.017 (2) −0.036 (3)

Geometric parameters (Å, °)

N—C10 1.357 (4) C7—H7B 0.9600
N—C11 1.421 (4) C7—H7C 0.9600
N—H0A 0.8600 C8—H8A 0.9600
O1—C2 1.219 (4) C8—H8B 0.9600
C1—C2 1.510 (5) C8—H8C 0.9600
C1—H1A 0.9600 C9—C10 1.497 (4)
C1—H1B 0.9600 C9—H9A 0.9700
C1—H1C 0.9600 C9—H9B 0.9700
O2—C10 1.217 (3) C11—C16 1.374 (4)
C2—C3 1.495 (4) C11—C12 1.384 (4)
C3—C6 1.521 (4) C12—C13 1.376 (5)
C3—C4 1.574 (4) C12—H12A 0.9300
C3—H3A 0.9800 C13—C14 1.347 (5)
C4—C8 1.512 (4) C13—H13A 0.9300
C4—C7 1.522 (4) C14—C15 1.411 (5)
C4—C5 1.573 (4) C14—H14A 0.9300
C5—C6 1.516 (4) C15—C16 1.399 (4)
C5—C9 1.523 (4) C15—C17 1.504 (5)
C5—H5A 0.9800 C16—H16A 0.9300
C6—H6A 0.9700 C17—H17A 0.9600
C6—H6B 0.9700 C17—H17B 0.9600
C7—H7A 0.9600 C17—H17C 0.9600
C10—N—C11 126.3 (3) H7B—C7—H7C 109.5
C10—N—H0A 116.9 C4—C8—H8A 109.5
C11—N—H0A 116.9 C4—C8—H8B 109.5
C2—C1—H1A 109.5 H8A—C8—H8B 109.5
C2—C1—H1B 109.5 C4—C8—H8C 109.5
H1A—C1—H1B 109.5 H8A—C8—H8C 109.5
C2—C1—H1C 109.5 H8B—C8—H8C 109.5
H1A—C1—H1C 109.5 C10—C9—C5 113.7 (3)
H1B—C1—H1C 109.5 C10—C9—H9A 108.8
O1—C2—C3 121.8 (4) C5—C9—H9A 108.8
O1—C2—C1 122.5 (4) C10—C9—H9B 108.8
C3—C2—C1 115.7 (4) C5—C9—H9B 108.8
C2—C3—C6 120.0 (3) H9A—C9—H9B 107.7
C2—C3—C4 116.1 (3) O2—C10—N 124.0 (3)
C6—C3—C4 88.9 (2) O2—C10—C9 121.9 (3)
C2—C3—H3A 110.1 N—C10—C9 114.0 (3)
C6—C3—H3A 110.1 C16—C11—C12 120.7 (4)
C4—C3—H3A 110.1 C16—C11—N 116.9 (3)
C8—C4—C7 112.0 (3) C12—C11—N 122.3 (3)
C8—C4—C3 112.7 (3) C13—C12—C11 117.0 (4)
C7—C4—C3 115.2 (3) C13—C12—H12A 121.5
C8—C4—C5 113.0 (3) C11—C12—H12A 121.5
C7—C4—C5 115.5 (3) C14—C13—C12 123.4 (4)
C3—C4—C5 86.1 (2) C14—C13—H13A 118.3
C6—C5—C9 119.3 (3) C12—C13—H13A 118.3
C6—C5—C4 89.1 (2) C13—C14—C15 120.8 (4)
C9—C5—C4 120.0 (3) C13—C14—H14A 119.6
C6—C5—H5A 108.9 C15—C14—H14A 119.6
C9—C5—H5A 108.9 C16—C15—C14 115.9 (3)
C4—C5—H5A 108.9 C16—C15—C17 120.9 (4)
C3—C6—C5 90.0 (2) C14—C15—C17 123.2 (4)
C3—C6—H6A 113.6 C11—C16—C15 122.2 (3)
C5—C6—H6A 113.6 C11—C16—H16A 118.9
C3—C6—H6B 113.6 C15—C16—H16A 118.9
C5—C6—H6B 113.6 C15—C17—H17A 109.5
H6A—C6—H6B 110.9 C15—C17—H17B 109.5
C4—C7—H7A 109.5 H17A—C17—H17B 109.5
C4—C7—H7B 109.5 C15—C17—H17C 109.5
H7A—C7—H7B 109.5 H17A—C17—H17C 109.5
C4—C7—H7C 109.5 H17B—C17—H17C 109.5
H7A—C7—H7C 109.5
O1—C2—C3—C6 −7.8 (5) C4—C5—C6—C3 −18.5 (2)
C1—C2—C3—C6 173.1 (3) C6—C5—C9—C10 172.5 (3)
O1—C2—C3—C4 97.1 (4) C4—C5—C9—C10 64.8 (4)
C1—C2—C3—C4 −82.0 (4) C11—N—C10—O2 −0.5 (5)
C2—C3—C4—C8 −27.7 (4) C11—N—C10—C9 179.7 (3)
C6—C3—C4—C8 95.5 (3) C5—C9—C10—O2 40.0 (5)
C2—C3—C4—C7 102.6 (4) C5—C9—C10—N −140.2 (3)
C6—C3—C4—C7 −134.3 (3) C10—N—C11—C16 149.2 (3)
C2—C3—C4—C5 −141.0 (3) C10—N—C11—C12 −34.2 (5)
C6—C3—C4—C5 −17.8 (2) C16—C11—C12—C13 −3.5 (5)
C8—C4—C5—C6 −95.2 (3) N—C11—C12—C13 −180.0 (3)
C7—C4—C5—C6 134.0 (3) C11—C12—C13—C14 2.1 (6)
C3—C4—C5—C6 17.9 (2) C12—C13—C14—C15 0.5 (6)
C8—C4—C5—C9 28.6 (4) C13—C14—C15—C16 −1.6 (5)
C7—C4—C5—C9 −102.2 (3) C13—C14—C15—C17 −179.5 (4)
C3—C4—C5—C9 141.7 (3) C12—C11—C16—C15 2.5 (5)
C2—C3—C6—C5 138.2 (3) N—C11—C16—C15 179.1 (3)
C4—C3—C6—C5 18.5 (2) C14—C15—C16—C11 0.2 (5)
C9—C5—C6—C3 −142.9 (3) C17—C15—C16—C11 178.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N—H0A···O2i 0.86 2.04 2.892 (4) 169
C12—H12A···O2 0.93 2.49 2.931 (5) 109
C13—H13A···O1ii 0.93 2.55 3.440 (5) 161

Symmetry codes: (i) x+1, −y−3/2, z−1/2; (ii) x+3/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2522).

References

  1. Enraf–Nonius (1989). CAD-4 Software Version 5.0. Enraf–Nonius, Delft, The Netherlands.
  2. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  3. Mitra, R. B. & Khanra, A. S. (1977). Synth. Commun.7, 245–250.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  6. Sheldrick, G. M. (1997b). SHELXTL Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  7. Yin, Y., Han, C., Song, Z. & Wang, Z. (2007). Acta Cryst. E63, o4048.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680706641X/at2522sup1.cif

e-64-0o291-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706641X/at2522Isup2.hkl

e-64-0o291-Isup2.hkl (153.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES