Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 21;64(Pt 1):o331. doi: 10.1107/S1600536807066901

Euphorbia factor L8: a diterpenoid from the seeds of Euphorbia lathyris

Wei Jiao a, Zhi-hua Mao b, Wei-wei Dong a, Mei-cai Deng a, Run-hua Lu a,*
PMCID: PMC2915372  PMID: 21200892

Abstract

The title compound [systematic name: (2S*,3S*,4R*,5R*,9S*,11S*,15R*)-5,15-diacet­oxy-3-nicotino­yloxy-14-oxolathyra-6(17),12(E)-diene], C30H37NO7, was isolated from the seeds of Euphorbia lathyris. The tricyclic diterpenoid molecule contains an 11-membered ring, a five-membered ring exhibiting an envelope conformation and a three-membered ring. The 11-membered ring is cis-fused with the three-membered ring and trans-fused with the five-membered ring.

Related literature

For related literature, see: Appendino et al. (1999); Fujiwara et al. (1996); Kupchan et al. (1976); the Pharmacopoeia Commission of the People’s Republic of China (2005).graphic file with name e-64-0o331-scheme1.jpg

Experimental

Crystal data

  • C30H37NO7

  • M r = 523.61

  • Orthorhombic, Inline graphic

  • a = 10.162 (6) Å

  • b = 15.249 (5) Å

  • c = 18.802 (9) Å

  • V = 2914 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.36 × 0.34 × 0.25 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3444 measured reflections

  • 3065 independent reflections

  • 1462 reflections with I > 2σ(I)

  • R int = 0.003

  • 3 standard reflections every 300 reflections intensity decay: 0.3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.118

  • S = 0.93

  • 3065 reflections

  • 354 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807066901/ww2099sup1.cif

e-64-0o331-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066901/ww2099Isup2.hkl

e-64-0o331-Isup2.hkl (150.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Support by the ‘Western Light’ Joint Research Program of the Chinese Academy of Sciences is acknowledged. The authors are also grateful to the staff of the analytical group of Chengdu Institute of Biology, Chinese Academy of Sciences, for the NMR spectroscopic data.

supplementary crystallographic information

Comment

The seed of Euphorbia lathyris is a traditional Chinese medicine which has been used for the treatment of hydropsy, ascites, amenorrhea, scabies (Pharmacopoeia Commission of the People's Republic of China, 2005). Several constituents in this plant proved to have significant activity (Kupchan et al., 1976; Fujiwara et al., 1996) and this medicine has been used to treat tumors and cancer in many countries. In our current investigation, Euphorbia Factor L8 (I) was isolated from the seeds of this plant. The structure of (I) was elucidated by comprehensive spectroscopic analysis, and was confirmed by single-crystal X-ray diffraction analysis reported here (Fig. 1). The title compound shows the tricyclic terpenoid skeleton of lathyrane, consisting of fused five-, eleven- and three-membered rings (A: C1–C4/C15, B: C4–C9/C11–C15, C: C9–C11). Rings A and B are trans-joined (torsion angle H4–C4–C15–O3 = -152.8°), while rings B and C are cis-joined (H9–C9–C11–H11 = 0.99°). Ring A adopts an envelope conformation, with atom C3 0.64 Å out of the plane defined by atoms C1/C2/C4/C15.

Experimental

The seeds of E. lathyris (10 kg) were collected in Sichuan province, People's Republic of China and extracted with 95% EtOH at room temperature. The extract was concentrated in vacuo and filtered. The filtrate was partitioned between EtOAc and H2O. The EtOAc soluble materials (1 kg) were subjected to silica-gel column chromatography (160–200 mesh, 4 kg) with petrol-EtOAc stepwise elution. The column chromatographic fractions (500 ml each) were combined into 12 fractions according to thin-layer chromatography monitoring analysis. Fraction 5 (7.5 g) was applied to a RP-18 silica-gel column and eluted with MeOH/H2O (7:3) to yield five fractions. Fraction 5.2 (1.4 g) was subjected to silica-gel column chromatography (200–300 mesh, 50 g) and eluted with petrol-EtOAc (5:1) to afford the compound (I). The isolated product was recrystallized at room temperature from acetone to afford the block crytals. 13C NMR (150 MHz, CDCl3, δ, p.p.m.): 48.6(C1), 37.7(C2), 81.6(C3), 52.3(C4), 65.5(C5), 144.4(C6), 34.9(C7), 21.0(C8), 35.4(C9), 25.3(C10), 28.5(C11), 146.6(C12), 134.3(C13), 196.6(C14), 92.5(C15), 14.2(C16), 115.5(C17), 29.0(C18), 16.8(C19), 12.4(C20), 164.9(C21), 126.0(C22), 137.0(C23), 123.3(C24), 153.5(C25), 151.0(C26), 170.2(C27), 21.6(C28), 169.7(C29), 22.1(C30).

Refinement

All hydrogen atoms were located geometrically with C—H distances of 0.93–0.98 Å, and refined using a riding model. The absolute configuration could not be determined from the X-ray analysis, owing to the absence of strong anomalous scatterers, and Friedel pairs were averaged. However, the absolute configuration can be suggested on a biogenetic basis (Appendino et al., 1999).

Figures

Fig. 1.

Fig. 1.

ORTEP plot of compound (I) showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed down the a axis. H-atoms omitted for clarity.

Crystal data

C30H37NO7 Dx = 1.194 Mg m3
Mr = 523.61 Melting point: 469(1) K
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 24 reflections
a = 10.162 (6) Å θ = 4.5–5.5º
b = 15.249 (5) Å µ = 0.08 mm1
c = 18.802 (9) Å T = 298 (2) K
V = 2914 (2) Å3 Block, colourless
Z = 4 0.36 × 0.34 × 0.25 mm
F000 = 1120

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.003
Radiation source: fine-focus sealed tube θmax = 25.5º
Monochromator: graphite θmin = 1.7º
T = 298(2) K h = −1→12
ω/2θ scans k = −3→18
Absorption correction: none l = −1→22
3444 measured reflections 3 standard reflections
3065 independent reflections every 300 reflections
1462 reflections with I > 2σ(I) intensity decay: 0.3%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.118   w = 1/[σ2(Fo2) + (0.0541P)2] where P = (Fo2 + 2Fc2)/3
S = 0.93 (Δ/σ)max < 0.001
3065 reflections Δρmax = 0.18 e Å3
354 parameters Δρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.4410 (3) 0.60363 (17) 0.75057 (16) 0.0422 (8)
O2 0.3383 (4) 0.6889 (2) 0.67028 (18) 0.0745 (12)
O3 0.6027 (3) 0.50915 (17) 0.86366 (15) 0.0442 (8)
O4 0.5648 (4) 0.4774 (2) 0.97859 (19) 0.0725 (11)
O5 0.6858 (4) 0.6902 (2) 0.97413 (16) 0.0600 (10)
O6 0.6894 (4) 0.63864 (19) 0.68532 (16) 0.0539 (9)
O7 0.6709 (5) 0.4992 (3) 0.6477 (2) 0.0887 (14)
N1 0.3198 (5) 0.3782 (2) 0.6543 (2) 0.0653 (13)
C1 0.4680 (5) 0.6336 (3) 0.9021 (2) 0.0463 (13)
H1A 0.4056 0.5857 0.8985 0.071 (7)*
H1B 0.4675 0.6552 0.9506 0.071 (7)*
C2 0.4308 (5) 0.7065 (3) 0.8509 (2) 0.0465 (12)
H2 0.4703 0.7610 0.8684 0.045 (5)*
C3 0.5024 (5) 0.6806 (3) 0.7833 (2) 0.0401 (12)
H3 0.5082 0.7297 0.7498 0.045 (5)*
C4 0.6377 (5) 0.6534 (3) 0.8103 (2) 0.0405 (12)
H4 0.6821 0.7076 0.8246 0.045 (5)*
C5 0.7290 (5) 0.6088 (3) 0.7565 (2) 0.0441 (12)
H5 0.7175 0.5451 0.7596 0.045 (5)*
C6 0.8749 (5) 0.6304 (3) 0.7607 (3) 0.0491 (14)
C7 0.9639 (6) 0.5689 (4) 0.7203 (3) 0.0763 (18)
H7A 1.0510 0.5950 0.7184 0.071 (7)*
H7B 0.9318 0.5648 0.6718 0.071 (7)*
C8 0.9773 (6) 0.4764 (4) 0.7498 (3) 0.0732 (17)
H8A 0.8901 0.4547 0.7612 0.071 (7)*
H8B 1.0129 0.4391 0.7127 0.071 (7)*
C9 1.0623 (6) 0.4677 (4) 0.8146 (3) 0.0686 (15)
H9 1.1538 0.4847 0.8055 0.045 (5)*
C10 1.0512 (6) 0.3977 (4) 0.8693 (3) 0.0697 (17)
C11 1.0173 (5) 0.4919 (3) 0.8887 (3) 0.0586 (16)
H11 1.0834 0.5220 0.9178 0.045 (5)*
C12 0.8824 (5) 0.5235 (3) 0.8982 (2) 0.0454 (12)
H12 0.8184 0.4984 0.8693 0.064 (7)*
C13 0.8419 (5) 0.5850 (3) 0.9442 (2) 0.0446 (12)
C14 0.7110 (5) 0.6257 (3) 0.9385 (2) 0.0443 (12)
C15 0.6070 (5) 0.6020 (3) 0.8815 (2) 0.0410 (12)
C16 0.2825 (5) 0.7213 (3) 0.8442 (3) 0.0612 (15)
H16A 0.2414 0.6687 0.8271 0.129 (6)*
H16B 0.2661 0.7683 0.8115 0.129 (6)*
H16C 0.2468 0.7361 0.8899 0.129 (6)*
C17 0.9201 (6) 0.7006 (4) 0.7918 (3) 0.0720 (16)
H17A 1.0093 0.7138 0.7894 0.089 (15)*
H17B 0.8631 0.7374 0.8164 0.089 (15)*
C18 0.9437 (7) 0.3300 (4) 0.8661 (3) 0.090 (2)
H18A 0.9760 0.2784 0.8426 0.129 (6)*
H18B 0.8702 0.3532 0.8401 0.129 (6)*
H18C 0.9164 0.3153 0.9134 0.129 (6)*
C19 1.1778 (7) 0.3627 (5) 0.9013 (4) 0.112 (3)
H19A 1.2163 0.3207 0.8694 0.129 (6)*
H19B 1.1591 0.3350 0.9460 0.129 (6)*
H19C 1.2382 0.4102 0.9086 0.129 (6)*
C20 0.9313 (6) 0.6255 (3) 0.9990 (3) 0.0698 (16)
H20A 0.9596 0.6822 0.9829 0.129 (6)*
H20B 1.0067 0.5885 1.0059 0.129 (6)*
H20C 0.8847 0.6316 1.0431 0.129 (6)*
C21 0.3664 (5) 0.6179 (3) 0.6929 (3) 0.0453 (12)
C22 0.3204 (5) 0.5350 (3) 0.6607 (2) 0.0411 (12)
C23 0.2381 (5) 0.5386 (3) 0.6026 (3) 0.0531 (13)
H23 0.2099 0.5925 0.5852 0.064 (7)*
C24 0.1981 (6) 0.4628 (4) 0.5708 (3) 0.0655 (15)
H24 0.1428 0.4639 0.5314 0.064 (7)*
C25 0.2414 (6) 0.3849 (4) 0.5984 (3) 0.0697 (17)
H25 0.2141 0.3334 0.5764 0.064 (7)*
C26 0.3572 (5) 0.4531 (3) 0.6841 (3) 0.0511 (13)
H26 0.4121 0.4500 0.7236 0.064 (7)*
C27 0.6664 (6) 0.5762 (4) 0.6360 (3) 0.0630 (16)
C28 0.6346 (7) 0.6157 (4) 0.5654 (2) 0.089 (2)
H28A 0.6076 0.5703 0.5332 0.129 (6)*
H28B 0.7111 0.6447 0.5469 0.129 (6)*
H28C 0.5646 0.6575 0.5709 0.129 (6)*
C29 0.5746 (5) 0.4539 (3) 0.9179 (3) 0.0548 (13)
C30 0.5620 (7) 0.3613 (3) 0.8920 (4) 0.085 (2)
H30A 0.5472 0.3230 0.9318 0.129 (6)*
H30B 0.6414 0.3444 0.8681 0.129 (6)*
H30C 0.4891 0.3572 0.8597 0.129 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.043 (2) 0.0396 (17) 0.0435 (17) −0.0049 (17) −0.0102 (19) −0.0047 (16)
O2 0.093 (3) 0.0434 (18) 0.088 (3) −0.003 (2) −0.046 (3) 0.0091 (19)
O3 0.046 (2) 0.0370 (17) 0.0495 (18) −0.0018 (16) 0.0047 (19) −0.0033 (15)
O4 0.087 (3) 0.067 (2) 0.063 (2) 0.003 (2) 0.026 (3) 0.013 (2)
O5 0.070 (3) 0.0543 (18) 0.0553 (18) 0.013 (2) −0.012 (2) −0.0226 (17)
O6 0.059 (2) 0.065 (2) 0.0376 (17) 0.0056 (19) 0.004 (2) −0.0063 (17)
O7 0.119 (4) 0.076 (3) 0.072 (2) 0.003 (3) 0.004 (3) −0.026 (2)
N1 0.080 (4) 0.044 (2) 0.072 (3) 0.000 (3) −0.014 (3) −0.010 (2)
C1 0.043 (3) 0.046 (3) 0.050 (3) −0.001 (2) 0.006 (3) −0.006 (2)
C2 0.042 (3) 0.044 (3) 0.054 (3) 0.001 (3) 0.000 (3) −0.010 (2)
C3 0.032 (3) 0.040 (3) 0.049 (3) −0.003 (2) −0.002 (3) −0.001 (2)
C4 0.037 (3) 0.044 (2) 0.040 (2) −0.007 (2) 0.001 (3) −0.005 (2)
C5 0.046 (3) 0.052 (3) 0.034 (3) 0.002 (3) 0.007 (3) 0.001 (2)
C6 0.036 (3) 0.068 (3) 0.044 (3) 0.003 (3) 0.004 (3) 0.008 (3)
C7 0.055 (4) 0.107 (5) 0.067 (4) 0.016 (4) 0.019 (4) 0.004 (4)
C8 0.061 (4) 0.094 (4) 0.065 (3) 0.024 (4) 0.013 (4) −0.018 (3)
C9 0.038 (3) 0.096 (4) 0.072 (4) 0.016 (4) 0.006 (3) −0.008 (4)
C10 0.056 (4) 0.079 (4) 0.074 (4) 0.026 (4) 0.002 (4) −0.009 (3)
C11 0.042 (4) 0.067 (4) 0.067 (3) 0.011 (3) −0.005 (3) −0.016 (3)
C12 0.039 (3) 0.052 (3) 0.046 (3) −0.004 (3) −0.003 (3) −0.005 (2)
C13 0.042 (3) 0.050 (3) 0.042 (3) 0.008 (3) 0.001 (3) −0.004 (2)
C14 0.052 (4) 0.043 (3) 0.037 (3) 0.001 (3) 0.004 (3) −0.002 (3)
C15 0.046 (3) 0.035 (2) 0.042 (3) 0.000 (2) 0.004 (3) −0.007 (2)
C16 0.037 (3) 0.075 (3) 0.072 (4) 0.010 (3) −0.002 (3) −0.007 (3)
C17 0.036 (4) 0.097 (4) 0.082 (4) −0.013 (4) 0.006 (4) 0.011 (4)
C18 0.098 (5) 0.074 (4) 0.097 (4) 0.020 (4) 0.012 (5) −0.023 (3)
C19 0.092 (6) 0.132 (6) 0.111 (5) 0.060 (5) −0.011 (5) −0.021 (5)
C20 0.061 (4) 0.073 (3) 0.075 (3) 0.006 (3) −0.017 (4) −0.026 (3)
C21 0.046 (3) 0.042 (3) 0.048 (3) 0.002 (3) −0.008 (3) −0.002 (3)
C22 0.039 (3) 0.039 (2) 0.046 (3) 0.002 (3) −0.002 (3) −0.002 (2)
C23 0.053 (4) 0.053 (3) 0.053 (3) 0.004 (3) −0.006 (3) 0.000 (3)
C24 0.073 (4) 0.071 (3) 0.053 (3) 0.002 (4) −0.029 (3) −0.014 (3)
C25 0.082 (5) 0.058 (4) 0.069 (3) −0.015 (4) −0.016 (4) −0.025 (3)
C26 0.051 (3) 0.050 (3) 0.052 (3) 0.000 (3) −0.014 (3) −0.002 (2)
C27 0.058 (4) 0.079 (4) 0.052 (3) 0.009 (4) 0.007 (3) −0.016 (3)
C28 0.104 (5) 0.117 (5) 0.045 (3) 0.003 (5) −0.004 (4) −0.006 (3)
C29 0.044 (3) 0.044 (3) 0.077 (4) −0.004 (3) 0.007 (3) 0.007 (3)
C30 0.085 (5) 0.045 (3) 0.126 (5) −0.011 (4) 0.011 (5) −0.004 (3)

Geometric parameters (Å, °)

O1—C21 1.340 (5) C10—C11 1.522 (7)
O1—C3 1.465 (5) C11—C12 1.463 (7)
O2—C21 1.198 (5) C11—H11 0.9800
O3—C29 1.354 (6) C12—C13 1.341 (6)
O3—C15 1.457 (5) C12—H12 0.9300
O4—C29 1.199 (6) C13—C14 1.471 (7)
O5—C14 1.217 (5) C13—C20 1.507 (7)
O6—C27 1.349 (6) C14—C15 1.547 (6)
O6—C5 1.470 (5) C16—H16A 0.9600
O7—C27 1.196 (6) C16—H16B 0.9600
N1—C25 1.323 (6) C16—H16C 0.9600
N1—C26 1.328 (5) C17—H17A 0.9300
C1—C2 1.518 (6) C17—H17B 0.9300
C1—C15 1.542 (6) C18—H18A 0.9600
C1—H1A 0.9700 C18—H18B 0.9600
C1—H1B 0.9700 C18—H18C 0.9600
C2—C3 1.516 (6) C19—H19A 0.9600
C2—C16 1.529 (7) C19—H19B 0.9600
C2—H2 0.9800 C19—H19C 0.9600
C3—C4 1.523 (6) C20—H20A 0.9600
C3—H3 0.9800 C20—H20B 0.9600
C4—C5 1.532 (6) C20—H20C 0.9600
C4—C15 1.582 (6) C21—C22 1.478 (6)
C4—H4 0.9800 C22—C26 1.375 (6)
C5—C6 1.521 (7) C22—C23 1.377 (6)
C5—H5 0.9800 C23—C24 1.364 (6)
C6—C17 1.303 (7) C23—H23 0.9300
C6—C7 1.508 (7) C24—C25 1.368 (7)
C7—C8 1.521 (7) C24—H24 0.9300
C7—H7A 0.9700 C25—H25 0.9300
C7—H7B 0.9700 C26—H26 0.9300
C8—C9 1.500 (7) C27—C28 1.492 (7)
C8—H8A 0.9700 C28—H28A 0.9600
C8—H8B 0.9700 C28—H28B 0.9600
C9—C10 1.487 (7) C28—H28C 0.9600
C9—C11 1.513 (7) C29—C30 1.499 (7)
C9—H9 0.9800 C30—H30A 0.9600
C10—C18 1.504 (8) C30—H30B 0.9600
C10—C19 1.518 (8) C30—H30C 0.9600
C21—O1—C3 116.8 (3) O5—C14—C13 119.4 (5)
C29—O3—C15 115.9 (3) O5—C14—C15 115.2 (4)
C27—O6—C5 117.0 (4) C13—C14—C15 124.7 (4)
C25—N1—C26 116.1 (4) O3—C15—C1 109.5 (4)
C2—C1—C15 107.4 (4) O3—C15—C14 114.0 (4)
C2—C1—H1A 110.2 C1—C15—C14 112.4 (4)
C15—C1—H1A 110.2 O3—C15—C4 106.9 (3)
C2—C1—H1B 110.2 C1—C15—C4 103.7 (4)
C15—C1—H1B 110.2 C14—C15—C4 109.6 (4)
H1A—C1—H1B 108.5 C2—C16—H16A 109.5
C3—C2—C1 102.8 (3) C2—C16—H16B 109.5
C3—C2—C16 116.3 (4) H16A—C16—H16B 109.5
C1—C2—C16 113.9 (4) C2—C16—H16C 109.5
C3—C2—H2 107.8 H16A—C16—H16C 109.5
C1—C2—H2 107.8 H16B—C16—H16C 109.5
C16—C2—H2 107.8 C6—C17—H17A 120.0
O1—C3—C2 110.9 (4) C6—C17—H17B 120.0
O1—C3—C4 107.8 (3) H17A—C17—H17B 120.0
C2—C3—C4 103.0 (4) C10—C18—H18A 109.5
O1—C3—H3 111.6 C10—C18—H18B 109.5
C2—C3—H3 111.6 H18A—C18—H18B 109.5
C4—C3—H3 111.6 C10—C18—H18C 109.5
C3—C4—C5 116.6 (4) H18A—C18—H18C 109.5
C3—C4—C15 103.8 (4) H18B—C18—H18C 109.5
C5—C4—C15 117.3 (4) C10—C19—H19A 109.5
C3—C4—H4 106.1 C10—C19—H19B 109.5
C5—C4—H4 106.1 H19A—C19—H19B 109.5
C15—C4—H4 106.1 C10—C19—H19C 109.5
O6—C5—C6 104.4 (4) H19A—C19—H19C 109.5
O6—C5—C4 107.3 (4) H19B—C19—H19C 109.5
C6—C5—C4 117.4 (4) C13—C20—H20A 109.5
O6—C5—H5 109.2 C13—C20—H20B 109.5
C6—C5—H5 109.2 H20A—C20—H20B 109.5
C4—C5—H5 109.2 C13—C20—H20C 109.5
C17—C6—C7 121.7 (5) H20A—C20—H20C 109.5
C17—C6—C5 123.0 (5) H20B—C20—H20C 109.5
C7—C6—C5 115.1 (5) O2—C21—O1 124.7 (4)
C6—C7—C8 116.5 (4) O2—C21—C22 123.5 (4)
C6—C7—H7A 108.2 O1—C21—C22 111.8 (4)
C8—C7—H7A 108.2 C26—C22—C23 117.1 (4)
C6—C7—H7B 108.2 C26—C22—C21 124.0 (4)
C8—C7—H7B 108.2 C23—C22—C21 118.8 (4)
H7A—C7—H7B 107.3 C24—C23—C22 119.6 (5)
C9—C8—C7 115.4 (5) C24—C23—H23 120.2
C9—C8—H8A 108.4 C22—C23—H23 120.2
C7—C8—H8A 108.4 C23—C24—C25 118.3 (5)
C9—C8—H8B 108.4 C23—C24—H24 120.9
C7—C8—H8B 108.4 C25—C24—H24 120.9
H8A—C8—H8B 107.5 N1—C25—C24 124.2 (5)
C10—C9—C8 125.6 (5) N1—C25—H25 117.9
C10—C9—C11 61.0 (3) C24—C25—H25 117.9
C8—C9—C11 123.5 (5) N1—C26—C22 124.6 (4)
C10—C9—H9 112.5 N1—C26—H26 117.7
C8—C9—H9 112.5 C22—C26—H26 117.7
C11—C9—H9 112.5 O7—C27—O6 124.0 (5)
C9—C10—C18 121.3 (5) O7—C27—C28 124.7 (5)
C9—C10—C19 117.5 (6) O6—C27—C28 111.4 (5)
C18—C10—C19 113.0 (5) C27—C28—H28A 109.5
C9—C10—C11 60.4 (4) C27—C28—H28B 109.5
C18—C10—C11 119.6 (5) H28A—C28—H28B 109.5
C19—C10—C11 115.4 (5) C27—C28—H28C 109.5
C12—C11—C9 118.4 (5) H28A—C28—H28C 109.5
C12—C11—C10 123.5 (5) H28B—C28—H28C 109.5
C9—C11—C10 58.7 (3) O4—C29—O3 123.3 (4)
C12—C11—H11 114.9 O4—C29—C30 125.7 (5)
C9—C11—H11 114.9 O3—C29—C30 111.0 (5)
C10—C11—H11 114.9 C29—C30—H30A 109.5
C13—C12—C11 126.6 (5) C29—C30—H30B 109.5
C13—C12—H12 116.7 H30A—C30—H30B 109.5
C11—C12—H12 116.7 C29—C30—H30C 109.5
C12—C13—C14 121.7 (4) H30A—C30—H30C 109.5
C12—C13—C20 122.9 (5) H30B—C30—H30C 109.5
C14—C13—C20 115.0 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2099).

References

  1. Appendino, G., Tron, G. C., Cravotto, G., Palmisano, G. & Jakupovic, J. (1999). J. Nat. Prod.62, 76–79. [DOI] [PubMed]
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Fujiwara, M., Ijichi, K., Tokuhisa, K., Katsuura, K., Shigeta, S., Konno, K., Wang, G.-Y.-S., Uemura, D., Yokota, T. & Baba, M. (1996). Antimicrob. Agents Chemother.40, 271–273. [DOI] [PMC free article] [PubMed]
  4. Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  5. Gabe, E. J. & White, P. S. (1993). DIFRAC Am. Crystallogr. Assoc. Meet., Pittsburgh, Abstract PA 104.
  6. Kupchan, S. M., Uchida, I., Branfman, A. R., Dailey, R. G. Jr & Fel, B. Y. (1976). Science, 191, 571–572. [DOI] [PubMed]
  7. Pharmacopoeia Commission of the People’s Republic of China (2005). Pharmacopoeia of the People’s Republic of China 2005, p. 24. Beijing: Chemical Industry Press.
  8. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807066901/ww2099sup1.cif

e-64-0o331-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066901/ww2099Isup2.hkl

e-64-0o331-Isup2.hkl (150.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES