Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 21;64(Pt 1):o340. doi: 10.1107/S1600536807066937

N-(3,4-Dimethyl­phen­yl)benzamide

B Thimme Gowda a,*, Miroslav Tokarčík b, Jozef Kožíšek b, B P Sowmya a, Hartmut Fuess c
PMCID: PMC2915381  PMID: 21200902

Abstract

The conformation of the NH bond in the structure of the title compound (N34DMPBA), C15H15NO, is anti to the meta-methyl substituent in the aniline ring, similar to that observed with respect to the meta-chloro substituent in N-(3,4-dichloro­phen­yl)benzamide (N34DCPBA), but in contrast to the syn conformation observed with respect to the meta-methyl substituent in N-(3,4-dimethyl­phen­yl)acetamide. The bond parameters in N34DMPBA are similar to those in N34DCPBA and other benzanilides. The mol­ecules in N34DMPBA are packed into a column-like structure in the direction of the a axis through N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Gowda, Foro & Fuess (2007); Gowda et al. (2003); Gowda, Sowmya et al. (2007).graphic file with name e-64-0o340-scheme1.jpg

Experimental

Crystal data

  • C15H15NO

  • M r = 225.28

  • Orthorhombic, Inline graphic

  • a = 9.1082 (2) Å

  • b = 9.8123 (2) Å

  • c = 28.5126 (8) Å

  • V = 2548.24 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 (2) K

  • 0.33 × 0.11 × 0.08 mm

Data collection

  • Oxford Diffraction Xcalibur System diffractometer

  • Absorption correction: none

  • 21605 measured reflections

  • 2527 independent reflections

  • 1448 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.194

  • S = 0.97

  • 2527 reflections

  • 159 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066937/dn2302sup1.cif

e-64-0o340-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066937/dn2302Isup2.hkl

e-64-0o340-Isup2.hkl (121.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.12 (2) 2.948 (2) 165 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (grant No. 1/2449/05).

supplementary crystallographic information

Comment

In the present work, the structure of N-(3,4-dimethylphenyl)-benzamide (N34DMPBA) has been determined to explore the effect of substituents on the structure of N-aromatic amides (Gowda et al., 2003; Gowda, Sowmya et al., 2007; Gowda, Foro & Fuess, 2007). The conformation of the N—H bond in N34DMPBA (FIg. 1) is anti to the meta methyl substituent in the aniline phenyl ring, similar to that observed with respect to the meta chloro substituent in N-(3,4-dichlorophenyl)-benzamide (N34DCPBA) (Gowda, Sowmya et al., 2007), but in contrast to the syn conformation observed with respect to the meta methyl substituent in the N-(3,4-dimethylphenyl)- acetamide (Gowda, Foro & Fuess, 2007). The bond parameters in N34DMPBA are similar to those in N34DCPBA and other benzanilides (Gowda et al., 2003). The molecules in N34DMPBA are packed into Column like s tructure in the direction of a axis through N—H···O hydrogen bonds (Table 1 & Fig. 2).

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

H atoms bonded to C atoms were placed in geometrically calculated positions and subsequently treated as riding with C–H distance 0.93Å for ring, 0.96Å for methyl. H(N) atom was visible in difference map. In the refinement the N–H distance was restrained to 0.86 (5) Å. The Uiso(H) values were set at 1.2 Ueq(C,N) of the parent atom (1.5 for methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Part of crystal structure of the title compound showing the hydrogen bonds N1–H1N···O1(i). Symmetry code (i): -x + 1/2, y + 1/2, z.

Crystal data

C15H15NO F000 = 960
Mr = 225.28 Dx = 1.174 Mg m3
Orthorhombic, Pbca Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 6829 reflections
a = 9.1082 (2) Å θ = 3.0–29.5º
b = 9.8123 (2) Å µ = 0.07 mm1
c = 28.5126 (8) Å T = 295 (2) K
V = 2548.24 (10) Å3 Prism, colourless
Z = 8 0.33 × 0.11 × 0.08 mm

Data collection

Oxford Diffraction Xcalibur System diffractometer 2527 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1448 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.035
Detector resolution: 10.4340 pixels mm-1 θmax = 26.2º
T = 295(2) K θmin = 5.1º
ω scans with κ offsets h = −11→9
Absorption correction: none k = −12→12
21605 measured reflections l = −32→35

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.194   w = 1/[σ2(Fo2) + (0.1315P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97 (Δ/σ)max < 0.001
2527 reflections Δρmax = 0.37 e Å3
159 parameters Δρmin = −0.18 e Å3
3 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1683 (2) 0.51852 (17) 0.15178 (7) 0.0543 (5)
C2 0.04493 (19) 0.58368 (18) 0.17772 (7) 0.0526 (5)
C3 −0.0315 (2) 0.5050 (2) 0.21000 (8) 0.0651 (6)
H3 −0.0063 0.4139 0.2141 0.078*
C4 −0.1439 (3) 0.5599 (2) 0.23587 (9) 0.0762 (7)
H4 −0.1931 0.5068 0.2578 0.091*
C5 −0.1835 (3) 0.6937 (2) 0.22926 (9) 0.0766 (7)
H5 −0.2602 0.7307 0.2466 0.092*
C6 −0.1109 (2) 0.7724 (2) 0.19736 (9) 0.0724 (7)
H6 −0.1384 0.8627 0.1929 0.087*
C7 0.0038 (2) 0.71760 (19) 0.17159 (8) 0.0608 (6)
H7 0.0534 0.7717 0.1500 0.073*
C8 0.4041 (2) 0.55741 (19) 0.11157 (8) 0.0631 (6)
C9 0.4082 (3) 0.4574 (2) 0.07867 (8) 0.0728 (7)
H9 0.3209 0.4171 0.0690 0.087*
C10 0.5432 (3) 0.4126 (2) 0.05859 (8) 0.0762 (7)
C11 0.6702 (3) 0.4749 (2) 0.07412 (9) 0.0804 (7)
C12 0.6653 (3) 0.5762 (3) 0.10680 (10) 0.0874 (8)
H12 0.7520 0.6175 0.1165 0.105*
C13 0.5336 (2) 0.6185 (3) 0.12574 (10) 0.0751 (7)
H13 0.5319 0.6878 0.1480 0.090*
C14 0.8200 (4) 0.4325 (3) 0.05424 (14) 0.1195 (12)
H14A 0.8943 0.4939 0.0655 0.179*
H14B 0.8169 0.4358 0.0206 0.179*
H14C 0.8426 0.3415 0.0642 0.179*
C15 0.5398 (4) 0.3011 (3) 0.02331 (12) 0.1179 (11)
H15A 0.6176 0.3142 0.0010 0.177*
H15B 0.4471 0.3020 0.0073 0.177*
H15C 0.5525 0.2150 0.0388 0.177*
N1 0.26924 (19) 0.60131 (17) 0.13237 (7) 0.0614 (5)
H1N 0.268 (2) 0.685 (2) 0.1389 (8) 0.074*
O1 0.17788 (16) 0.39356 (13) 0.14930 (6) 0.0777 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0539 (11) 0.0379 (10) 0.0710 (13) −0.0013 (8) −0.0095 (9) 0.0014 (8)
C2 0.0473 (11) 0.0428 (11) 0.0677 (13) −0.0043 (7) −0.0114 (9) 0.0008 (8)
C3 0.0660 (14) 0.0438 (11) 0.0854 (15) −0.0053 (9) −0.0009 (11) 0.0047 (10)
C4 0.0789 (16) 0.0630 (14) 0.0869 (16) −0.0100 (11) 0.0189 (13) 0.0031 (11)
C5 0.0701 (15) 0.0670 (15) 0.0927 (17) 0.0000 (11) 0.0149 (12) −0.0082 (12)
C6 0.0709 (14) 0.0501 (11) 0.0963 (16) 0.0082 (10) 0.0072 (13) −0.0006 (11)
C7 0.0604 (12) 0.0439 (11) 0.0781 (14) −0.0018 (9) 0.0001 (10) 0.0058 (10)
C8 0.0752 (15) 0.0450 (11) 0.0692 (13) 0.0032 (10) 0.0047 (11) 0.0064 (10)
C9 0.0859 (17) 0.0577 (13) 0.0748 (14) −0.0017 (11) −0.0030 (12) 0.0058 (11)
C10 0.107 (2) 0.0519 (13) 0.0697 (15) 0.0122 (12) 0.0034 (13) 0.0056 (11)
C11 0.0936 (19) 0.0621 (14) 0.0855 (16) 0.0091 (12) 0.0067 (14) 0.0044 (12)
C12 0.0704 (16) 0.0881 (17) 0.1036 (19) 0.0007 (13) 0.0041 (14) −0.0054 (15)
C13 0.0639 (14) 0.0710 (15) 0.0903 (17) −0.0011 (11) 0.0054 (12) −0.0065 (12)
C14 0.106 (2) 0.108 (2) 0.145 (3) 0.0300 (18) 0.039 (2) 0.0006 (19)
C15 0.174 (3) 0.085 (2) 0.095 (2) 0.0096 (18) 0.011 (2) −0.0201 (16)
N1 0.0628 (11) 0.0394 (9) 0.0821 (12) 0.0001 (8) 0.0098 (9) −0.0019 (8)
O1 0.0706 (10) 0.0401 (9) 0.1224 (14) 0.0007 (6) 0.0090 (9) 0.0026 (8)

Geometric parameters (Å, °)

C1—O1 1.231 (2) C9—C10 1.425 (4)
C1—N1 1.346 (2) C9—H9 0.9300
C1—C2 1.490 (3) C10—C11 1.382 (4)
C2—C7 1.377 (3) C10—C15 1.487 (4)
C2—C3 1.389 (3) C11—C12 1.363 (4)
C3—C4 1.372 (3) C11—C14 1.535 (4)
C3—H3 0.9300 C12—C13 1.379 (4)
C4—C5 1.374 (3) C12—H12 0.9300
C4—H4 0.9300 C13—H13 0.9300
C5—C6 1.364 (3) C14—H14A 0.9600
C5—H5 0.9300 C14—H14B 0.9600
C6—C7 1.386 (3) C14—H14C 0.9600
C6—H6 0.9300 C15—H15A 0.9600
C7—H7 0.9300 C15—H15B 0.9600
C8—C9 1.358 (3) C15—H15C 0.9600
C8—C13 1.384 (3) N1—H1N 0.84 (2)
C8—N1 1.430 (3)
O1—C1—N1 121.96 (18) C11—C10—C9 117.2 (2)
O1—C1—C2 120.61 (17) C11—C10—C15 124.1 (3)
N1—C1—C2 117.41 (15) C9—C10—C15 118.7 (3)
C7—C2—C3 118.57 (18) C12—C11—C10 120.9 (2)
C7—C2—C1 123.48 (17) C12—C11—C14 118.6 (3)
C3—C2—C1 117.95 (16) C10—C11—C14 120.4 (3)
C4—C3—C2 120.78 (19) C11—C12—C13 121.0 (2)
C4—C3—H3 119.6 C11—C12—H12 119.5
C2—C3—H3 119.6 C13—C12—H12 119.5
C3—C4—C5 119.8 (2) C12—C13—C8 119.8 (2)
C3—C4—H4 120.1 C12—C13—H13 120.1
C5—C4—H4 120.1 C8—C13—H13 120.1
C6—C5—C4 120.3 (2) C11—C14—H14A 109.5
C6—C5—H5 119.8 C11—C14—H14B 109.5
C4—C5—H5 119.8 H14A—C14—H14B 109.5
C5—C6—C7 120.0 (2) C11—C14—H14C 109.5
C5—C6—H6 120.0 H14A—C14—H14C 109.5
C7—C6—H6 120.0 H14B—C14—H14C 109.5
C2—C7—C6 120.50 (19) C10—C15—H15A 109.5
C2—C7—H7 119.7 C10—C15—H15B 109.5
C6—C7—H7 119.7 H15A—C15—H15B 109.5
C9—C8—C13 119.4 (2) C10—C15—H15C 109.5
C9—C8—N1 121.9 (2) H15A—C15—H15C 109.5
C13—C8—N1 118.7 (2) H15B—C15—H15C 109.5
C8—C9—C10 121.6 (2) C1—N1—C8 125.11 (16)
C8—C9—H9 119.2 C1—N1—H1N 119.4 (16)
C10—C9—H9 119.2 C8—N1—H1N 113.3 (16)
O1—C1—C2—C7 −161.5 (2) C8—C9—C10—C15 179.0 (2)
N1—C1—C2—C7 19.9 (3) C9—C10—C11—C12 −0.9 (4)
O1—C1—C2—C3 19.0 (3) C15—C10—C11—C12 −179.6 (2)
N1—C1—C2—C3 −159.59 (19) C9—C10—C11—C14 180.0 (2)
C7—C2—C3—C4 −1.2 (3) C15—C10—C11—C14 1.3 (4)
C1—C2—C3—C4 178.3 (2) C10—C11—C12—C13 0.8 (4)
C2—C3—C4—C5 1.3 (4) C14—C11—C12—C13 179.9 (3)
C3—C4—C5—C6 −0.5 (4) C11—C12—C13—C8 0.1 (4)
C4—C5—C6—C7 −0.3 (4) C9—C8—C13—C12 −0.7 (3)
C3—C2—C7—C6 0.4 (3) N1—C8—C13—C12 178.9 (2)
C1—C2—C7—C6 −179.1 (2) O1—C1—N1—C8 −7.0 (3)
C5—C6—C7—C2 0.3 (3) C2—C1—N1—C8 171.52 (18)
C13—C8—C9—C10 0.6 (3) C9—C8—N1—C1 51.0 (3)
N1—C8—C9—C10 −179.02 (19) C13—C8—N1—C1 −128.6 (2)
C8—C9—C10—C11 0.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.84 (2) 2.12 (2) 2.948 (2) 165 (2)

Symmetry codes: (i) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2302).

References

  1. Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63 lw2051.
  5. Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  6. Gowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007). Acta Cryst. E63, o3365. [DOI] [PMC free article] [PubMed]
  7. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  8. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066937/dn2302sup1.cif

e-64-0o340-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066937/dn2302Isup2.hkl

e-64-0o340-Isup2.hkl (121.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES