Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 21;64(Pt 1):o343. doi: 10.1107/S1600536807067256

(1R,4R,5R)-1,3,4-Triphenyl-7-[(R)-1-phenyl­ethyl]-2-oxa-3,7-diaza­spiro­[4.5]decan-10-one

A Malathy a, R Suresh Kumar b, S Perumal b, J Suresh c, Nilantha Lakshman d,*
PMCID: PMC2915384  PMID: 21200905

Abstract

In the title compound, C33H32N2O2, the polysubstituted piperidine ring adopts a chair conformation. The isoxazolidine ring is in an envelope conformation. In the crystal structure, intra- and inter­molecular C—H⋯π inter­actions involving the phenyl rings are observed.

Related literature

For related literature, see: Ali Dondas et al. (2001); Alibés et al. (2003); Blanarikova-Hlobilova et al. (2003); Carda et al. (2000); Carruthers (1990); Herrera et al. (2001); Huisgen (1963); Ishar et al. (2000). For ring puckering parameters, see: Cremer & Pople (1975).graphic file with name e-64-0o343-scheme1.jpg

Experimental

Crystal data

  • C33H32N2O2

  • M r = 488.61

  • Orthorhombic, Inline graphic

  • a = 10.589 (5) Å

  • b = 14.582 (7) Å

  • c = 17.443 (8) Å

  • V = 2693 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 273 (2) K

  • 0.20 × 0.16 × 0.12 mm

Data collection

  • Nonius MACH-3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.986, T max = 0.991

  • 13617 measured reflections

  • 2701 independent reflections

  • 1899 reflections with I > 2σ(I)

  • R int = 0.074

  • 2 standard reflections frequency: 60 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.118

  • S = 1.09

  • 2701 reflections

  • 335 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807067256/ci2540sup1.cif

e-64-0o343-sup1.cif (25.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067256/ci2540Isup2.hkl

e-64-0o343-Isup2.hkl (129.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the phenyl rings C71–C76, C91–C96 and C81–C86, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1 0.98 2.35 2.775 (5) 106
C26—H26⋯O2 0.93 2.29 2.623 (5) 101
C82—H82⋯O2 0.93 2.43 2.757 (5) 101
C3—H3ACg1 0.97 2.90 3.659 (5) 136
C2—H2ACg2i 0.97 2.93 3.707 (5) 138
C74—H74⋯Cg3ii 0.93 2.96 3.722 (6) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

SP thanks the CSIR, New Delhi, for a Major Research Project.

supplementary crystallographic information

Comment

1,3-Dipolar cycloaddition is a versatile reaction for the construction of five-membered ring heterocycles of biological importance (Huisgen, 1963). Among the 1,3-dipoles, nitrones have been subjected to numerous 1,3-dipolar cycloadditions, ascribable to their stability and ease of generation (Blanarikova-Hlobilova et al., 2003; Herrera et al., 2001). The 1,3-dipolar cycloaddition of nitrones to alkenes afford isoxazolidines with generation of as many as three new contiguous stereocenters in a single step (Ishar et al., 2000; Carda et al., 2000; Ali Dondas et al., 2001; Alibés et al., 2003). These isoxazolidines can be further elaborated into polyfunctional cyclic or acyclic bioactive compounds with complete control of relative stereochemistry (Carruthers, 1990).

The molecular structure of (I) is shown in Fig.1. The five-membered isoxazolidine ring has an envelope conformation, as indicated by the Cremer & Pople (1975) puckering parameters Q = 0.454 (3) Å and φ = 3.3 (5)°. The piperidine ring adopts a chair conformation. The dihedral angle between the C21–C26 and C71–C76 phenyl rings is 77.7 (1)°. The C21–C26, C71–C76 and C81–C86 phenyl rings form dihedral angles of 35.8 (2)°, 77.5 (1)° and 72.3 (2)°, respectively, with the N2/C7/C5/C8 plane.

Weak intramolecular C—H···O and C—H···π interactions are observed in the molecular structure. The packing of molecules is governed by weak C—H···π interactions (Table 1) and van der Walls interactions. In the Table 1, Cg1, Cg2 and Cg3 denote the centroids of the C71–C76, C91–C96 and C81–C86 phenyl rings.

Experimental

A mixture of [(R)-1-phenylethyl]-3-[(E)-phenylmethylidene]tetrahydro-4(1H)- pyridinone (0.300 g, 1 mmol) and nitrone (0.244 g, 1.2 mmol) in toluene (25 ml) was refluxed for 10 h. The progress of the reaction was monitored by thin-layer chromatography (TLC) and after completion of the reaction, the solvent was evaporated in vacuo. The residue was then subjected to flash column chromatography on silica gel using petroleum ether-ethyl acetate (10:1) as eluent to obtain crystals of the title compound in 8% yield (0.040 g) along with two other products in semi-solid form.

Refinement

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å, and Uiso = 1.2Ueq(C) for CH2 and CH groups, and 1.5Ueq for CH3 groups. In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C33H32N2O2 F000 = 1040
Mr = 488.61 Dx = 1.205 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 25 reflections
a = 10.589 (5) Å θ = 2–25º
b = 14.582 (7) Å µ = 0.08 mm1
c = 17.443 (8) Å T = 273 (2) K
V = 2693 (2) Å3 Needle, colourless
Z = 4 0.20 × 0.16 × 0.12 mm

Data collection

Nonius MACH-3 diffractometer Rint = 0.074
Radiation source: fine-focus sealed tube θmax = 25.0º
Monochromator: graphite θmin = 1.8º
T = 273(2) K h = −12→11
ω/2θ scans k = −17→16
Absorption correction: ψ scan(North et al., 1968) l = −20→20
Tmin = 0.986, Tmax = 0.991 2 standard reflections
13617 measured reflections every 60 min
2701 independent reflections intensity decay: none
1899 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065 H-atom parameters constrained
wR(F2) = 0.118   w = 1/[σ2(Fo2) + (0.0519P)2] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
2701 reflections Δρmax = 0.16 e Å3
335 parameters Δρmin = −0.14 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.1883 (4) 0.3386 (3) 0.0817 (2) 0.0554 (11)
H2A 0.1260 0.2938 0.0978 0.066*
H2B 0.1896 0.3399 0.0261 0.066*
C3 0.1521 (4) 0.4324 (3) 0.1120 (2) 0.0544 (11)
H3A 0.2006 0.4784 0.0847 0.065*
H3B 0.0636 0.4430 0.1007 0.065*
C4 0.1724 (4) 0.4453 (3) 0.1961 (2) 0.0443 (10)
C5 0.2865 (3) 0.3966 (2) 0.2314 (2) 0.0390 (9)
C6 0.3004 (4) 0.3021 (2) 0.1937 (2) 0.0428 (10)
H6A 0.3743 0.2713 0.2142 0.051*
H6B 0.2269 0.2649 0.2054 0.051*
C7 0.4141 (4) 0.4506 (2) 0.22225 (19) 0.0406 (9)
H7 0.4773 0.4089 0.2006 0.049*
C8 0.2734 (4) 0.3908 (3) 0.3199 (2) 0.0438 (10)
H8 0.2265 0.4444 0.3382 0.053*
C9 0.3577 (4) 0.2247 (3) 0.0750 (2) 0.0481 (11)
H9 0.3031 0.1748 0.0928 0.058*
C10 0.4920 (4) 0.2034 (3) 0.0992 (2) 0.0643 (13)
H10A 0.4945 0.1932 0.1535 0.096*
H10B 0.5457 0.2542 0.0864 0.096*
H10C 0.5208 0.1494 0.0730 0.096*
C21 0.5823 (4) 0.4778 (2) 0.31879 (19) 0.0383 (9)
C22 0.6625 (4) 0.5250 (3) 0.2706 (2) 0.0528 (10)
H22 0.6305 0.5506 0.2258 0.063*
C23 0.7890 (4) 0.5351 (3) 0.2874 (2) 0.0562 (11)
H23 0.8411 0.5680 0.2544 0.067*
C24 0.8378 (4) 0.4969 (3) 0.3523 (3) 0.0617 (12)
H24 0.9233 0.5027 0.3635 0.074*
C25 0.7593 (5) 0.4500 (3) 0.4008 (3) 0.0723 (14)
H25 0.7921 0.4239 0.4452 0.087*
C26 0.6322 (4) 0.4408 (3) 0.3848 (2) 0.0590 (12)
H26 0.5800 0.4096 0.4188 0.071*
C71 0.4083 (4) 0.5349 (3) 0.1730 (2) 0.0429 (9)
C72 0.4473 (4) 0.5300 (3) 0.0971 (2) 0.0573 (12)
H72 0.4842 0.4764 0.0788 0.069*
C73 0.4319 (5) 0.6035 (4) 0.0490 (3) 0.0742 (14)
H73 0.4565 0.5987 −0.0021 0.089*
C74 0.3810 (5) 0.6836 (4) 0.0748 (3) 0.0781 (16)
H74 0.3696 0.7329 0.0417 0.094*
C75 0.3467 (4) 0.6905 (3) 0.1509 (3) 0.0673 (13)
H75 0.3150 0.7456 0.1696 0.081*
C76 0.3589 (4) 0.6165 (3) 0.1994 (2) 0.0523 (11)
H76 0.3336 0.6216 0.2502 0.063*
C81 0.2124 (4) 0.3053 (3) 0.3508 (2) 0.0453 (10)
C82 0.2819 (4) 0.2315 (3) 0.3763 (2) 0.0559 (12)
H82 0.3696 0.2350 0.3767 0.067*
C83 0.2234 (5) 0.1530 (3) 0.4014 (3) 0.0680 (14)
H83 0.2718 0.1037 0.4182 0.082*
C84 0.0949 (6) 0.1466 (4) 0.4019 (2) 0.0737 (15)
H84 0.0559 0.0933 0.4191 0.088*
C85 0.0232 (5) 0.2193 (4) 0.3767 (3) 0.0758 (15)
H85 −0.0644 0.2153 0.3766 0.091*
C86 0.0824 (4) 0.2987 (3) 0.3515 (2) 0.0571 (12)
H86 0.0339 0.3481 0.3349 0.068*
C91 0.3510 (4) 0.2279 (3) −0.0116 (2) 0.0496 (11)
C92 0.3106 (5) 0.1525 (3) −0.0517 (3) 0.0711 (14)
H92 0.2824 0.1011 −0.0253 0.085*
C93 0.3112 (6) 0.1519 (5) −0.1306 (3) 0.099 (2)
H93 0.2846 0.0998 −0.1568 0.119*
C94 0.3506 (6) 0.2269 (6) −0.1706 (3) 0.103 (2)
H94 0.3513 0.2259 −0.2239 0.124*
C95 0.3891 (5) 0.3036 (5) −0.1320 (3) 0.0862 (17)
H95 0.4133 0.3559 −0.1588 0.103*
C96 0.3919 (4) 0.3029 (4) −0.0530 (2) 0.0661 (13)
H96 0.4221 0.3542 −0.0270 0.079*
N1 0.3132 (3) 0.3116 (2) 0.11050 (15) 0.0403 (8)
N2 0.4506 (3) 0.4721 (2) 0.30247 (16) 0.0423 (8)
O1 0.1026 (3) 0.4923 (2) 0.23424 (16) 0.0660 (8)
O2 0.4005 (2) 0.39618 (18) 0.34690 (13) 0.0483 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.045 (3) 0.080 (3) 0.041 (2) 0.002 (3) −0.006 (2) −0.009 (2)
C3 0.037 (2) 0.071 (3) 0.055 (3) 0.007 (2) −0.009 (2) 0.000 (2)
C4 0.039 (2) 0.043 (2) 0.051 (3) −0.004 (2) 0.004 (2) 0.002 (2)
C5 0.041 (2) 0.041 (2) 0.035 (2) −0.001 (2) 0.0020 (17) 0.0005 (18)
C6 0.044 (2) 0.042 (2) 0.042 (2) 0.001 (2) 0.0011 (19) −0.0026 (19)
C7 0.040 (2) 0.046 (2) 0.036 (2) 0.000 (2) 0.0019 (18) −0.0049 (19)
C8 0.042 (2) 0.051 (2) 0.039 (2) −0.002 (2) 0.0009 (18) −0.007 (2)
C9 0.059 (3) 0.049 (2) 0.036 (2) −0.006 (2) 0.007 (2) −0.0012 (19)
C10 0.074 (3) 0.074 (3) 0.044 (3) 0.025 (3) 0.009 (2) −0.002 (2)
C21 0.045 (2) 0.037 (2) 0.033 (2) 0.000 (2) −0.0034 (19) −0.0061 (18)
C22 0.050 (3) 0.070 (3) 0.038 (2) −0.001 (2) 0.000 (2) 0.003 (2)
C23 0.053 (3) 0.064 (3) 0.052 (3) −0.006 (2) 0.005 (2) −0.001 (2)
C24 0.046 (3) 0.068 (3) 0.071 (3) −0.004 (3) −0.007 (2) −0.002 (3)
C25 0.066 (3) 0.083 (3) 0.068 (3) −0.002 (3) −0.025 (3) 0.015 (3)
C26 0.060 (3) 0.065 (3) 0.052 (3) −0.011 (2) −0.005 (2) 0.015 (2)
C71 0.041 (2) 0.046 (2) 0.042 (2) −0.007 (2) −0.0045 (19) 0.002 (2)
C72 0.069 (3) 0.062 (3) 0.041 (3) −0.009 (2) −0.001 (2) 0.007 (2)
C73 0.085 (4) 0.090 (4) 0.048 (3) −0.012 (3) −0.003 (3) 0.017 (3)
C74 0.072 (4) 0.082 (4) 0.080 (4) −0.012 (3) −0.011 (3) 0.040 (3)
C75 0.060 (3) 0.059 (3) 0.084 (4) 0.001 (3) −0.005 (3) 0.016 (3)
C76 0.050 (3) 0.056 (3) 0.050 (3) −0.007 (2) 0.001 (2) 0.006 (2)
C81 0.051 (3) 0.056 (3) 0.029 (2) −0.004 (2) 0.0061 (19) −0.005 (2)
C82 0.055 (3) 0.063 (3) 0.050 (3) −0.002 (3) 0.009 (2) 0.005 (2)
C83 0.087 (4) 0.060 (3) 0.056 (3) −0.003 (3) 0.005 (3) 0.006 (3)
C84 0.095 (4) 0.071 (3) 0.055 (3) −0.034 (4) 0.010 (3) −0.002 (3)
C85 0.058 (3) 0.104 (4) 0.066 (3) −0.024 (3) 0.002 (3) −0.005 (3)
C86 0.049 (3) 0.071 (3) 0.051 (3) −0.004 (3) 0.003 (2) 0.001 (2)
C91 0.051 (3) 0.061 (3) 0.037 (2) 0.008 (2) 0.002 (2) −0.005 (2)
C92 0.084 (4) 0.068 (3) 0.061 (3) 0.006 (3) −0.009 (3) −0.024 (3)
C93 0.105 (5) 0.125 (5) 0.068 (4) 0.033 (5) −0.027 (4) −0.047 (4)
C94 0.105 (5) 0.165 (7) 0.040 (3) 0.061 (5) −0.010 (3) −0.012 (4)
C95 0.086 (4) 0.122 (5) 0.050 (4) 0.025 (4) 0.010 (3) 0.024 (3)
C96 0.070 (3) 0.084 (3) 0.044 (3) 0.008 (3) 0.004 (2) 0.004 (3)
N1 0.0415 (19) 0.0506 (18) 0.0287 (18) 0.0008 (17) −0.0027 (14) −0.0007 (15)
N2 0.050 (2) 0.0451 (19) 0.0324 (18) −0.0084 (16) 0.0004 (14) 0.0052 (16)
O1 0.0558 (18) 0.073 (2) 0.0693 (19) 0.0207 (17) 0.0077 (16) −0.0070 (17)
O2 0.0513 (17) 0.0588 (17) 0.0346 (14) −0.0115 (15) −0.0023 (13) 0.0056 (14)

Geometric parameters (Å, °)

C2—N1 1.468 (5) C25—C26 1.382 (6)
C2—C3 1.515 (5) C25—H25 0.93
C2—H2A 0.97 C26—H26 0.93
C2—H2B 0.97 C71—C76 1.379 (5)
C3—C4 1.495 (5) C71—C72 1.388 (5)
C3—H3A 0.97 C72—C73 1.372 (6)
C3—H3B 0.97 C72—H72 0.93
C4—O1 1.208 (4) C73—C74 1.363 (7)
C4—C5 1.530 (5) C73—H73 0.93
C5—C6 1.534 (5) C74—C75 1.379 (6)
C5—C8 1.552 (5) C74—H74 0.93
C5—C7 1.572 (5) C75—C76 1.376 (5)
C6—N1 1.465 (4) C75—H75 0.93
C6—H6A 0.97 C76—H76 0.93
C6—H6B 0.97 C81—C82 1.378 (5)
C7—N2 1.485 (4) C81—C86 1.380 (5)
C7—C71 1.502 (5) C82—C83 1.374 (6)
C7—H7 0.98 C82—H82 0.93
C8—O2 1.428 (4) C83—C84 1.364 (7)
C8—C81 1.503 (5) C83—H83 0.93
C8—H8 0.98 C84—C85 1.375 (7)
C9—N1 1.488 (5) C84—H84 0.93
C9—C91 1.512 (5) C85—C86 1.388 (6)
C9—C10 1.516 (6) C85—H85 0.93
C9—H9 0.98 C86—H86 0.93
C10—H10A 0.96 C91—C92 1.372 (5)
C10—H10B 0.96 C91—C96 1.381 (6)
C10—H10C 0.96 C92—C93 1.375 (6)
C21—C26 1.376 (5) C92—H92 0.93
C21—C22 1.379 (5) C93—C94 1.363 (8)
C21—N2 1.425 (4) C93—H93 0.93
C22—C23 1.380 (6) C94—C95 1.369 (8)
C22—H22 0.93 C94—H94 0.93
C23—C24 1.365 (5) C95—C96 1.378 (6)
C23—H23 0.93 C95—H95 0.93
C24—C25 1.369 (6) C96—H96 0.93
C24—H24 0.93 N2—O2 1.452 (4)
N1—C2—C3 110.5 (3) C26—C25—H25 119.5
N1—C2—H2A 109.5 C21—C26—C25 120.4 (4)
C3—C2—H2A 109.5 C21—C26—H26 119.8
N1—C2—H2B 109.5 C25—C26—H26 119.8
C3—C2—H2B 109.5 C76—C71—C72 118.4 (4)
H2A—C2—H2B 108.1 C76—C71—C7 122.1 (3)
C4—C3—C2 114.8 (3) C72—C71—C7 119.4 (4)
C4—C3—H3A 108.6 C73—C72—C71 120.5 (4)
C2—C3—H3A 108.6 C73—C72—H72 119.8
C4—C3—H3B 108.6 C71—C72—H72 119.8
C2—C3—H3B 108.6 C74—C73—C72 120.9 (4)
H3A—C3—H3B 107.5 C74—C73—H73 119.5
O1—C4—C3 121.5 (4) C72—C73—H73 119.5
O1—C4—C5 121.7 (4) C73—C74—C75 119.0 (4)
C3—C4—C5 116.7 (3) C73—C74—H74 120.5
C4—C5—C6 108.7 (3) C75—C74—H74 120.5
C4—C5—C8 110.8 (3) C76—C75—C74 120.6 (5)
C6—C5—C8 112.7 (3) C76—C75—H75 119.7
C4—C5—C7 113.9 (3) C74—C75—H75 119.7
C6—C5—C7 108.9 (3) C75—C76—C71 120.5 (4)
C8—C5—C7 101.9 (3) C75—C76—H76 119.8
N1—C6—C5 110.4 (3) C71—C76—H76 119.8
N1—C6—H6A 109.6 C82—C81—C86 118.4 (4)
C5—C6—H6A 109.6 C82—C81—C8 122.2 (4)
N1—C6—H6B 109.6 C86—C81—C8 119.3 (4)
C5—C6—H6B 109.6 C83—C82—C81 120.8 (4)
H6A—C6—H6B 108.1 C83—C82—H82 119.6
N2—C7—C71 112.1 (3) C81—C82—H82 119.6
N2—C7—C5 103.5 (3) C84—C83—C82 120.6 (5)
C71—C7—C5 115.7 (3) C84—C83—H83 119.7
N2—C7—H7 108.4 C82—C83—H83 119.7
C71—C7—H7 108.4 C83—C84—C85 119.7 (5)
C5—C7—H7 108.4 C83—C84—H84 120.1
O2—C8—C81 109.4 (3) C85—C84—H84 120.1
O2—C8—C5 103.9 (3) C84—C85—C86 119.7 (5)
C81—C8—C5 116.1 (3) C84—C85—H85 120.2
O2—C8—H8 109.0 C86—C85—H85 120.2
C81—C8—H8 109.0 C81—C86—C85 120.7 (5)
C5—C8—H8 109.0 C81—C86—H86 119.6
N1—C9—C91 112.0 (3) C85—C86—H86 119.6
N1—C9—C10 110.8 (3) C92—C91—C96 117.7 (4)
C91—C9—C10 109.2 (3) C92—C91—C9 120.0 (4)
N1—C9—H9 108.3 C96—C91—C9 122.2 (4)
C91—C9—H9 108.3 C91—C92—C93 121.0 (5)
C10—C9—H9 108.3 C91—C92—H92 119.5
C9—C10—H10A 109.5 C93—C92—H92 119.5
C9—C10—H10B 109.5 C94—C93—C92 120.6 (6)
H10A—C10—H10B 109.5 C94—C93—H93 119.7
C9—C10—H10C 109.5 C92—C93—H93 119.7
H10A—C10—H10C 109.5 C93—C94—C95 119.6 (5)
H10B—C10—H10C 109.5 C93—C94—H94 120.2
C26—C21—C22 117.9 (4) C95—C94—H94 120.2
C26—C21—N2 121.3 (4) C94—C95—C96 119.6 (6)
C22—C21—N2 120.6 (3) C94—C95—H95 120.2
C21—C22—C23 121.5 (4) C96—C95—H95 120.2
C21—C22—H22 119.2 C95—C96—C91 121.5 (5)
C23—C22—H22 119.2 C95—C96—H96 119.3
C24—C23—C22 120.0 (4) C91—C96—H96 119.3
C24—C23—H23 120.0 C6—N1—C2 106.3 (3)
C22—C23—H23 120.0 C6—N1—C9 111.2 (3)
C23—C24—C25 119.2 (4) C2—N1—C9 111.8 (3)
C23—C24—H24 120.4 C21—N2—O2 107.2 (3)
C25—C24—H24 120.4 C21—N2—C7 117.1 (3)
C24—C25—C26 121.0 (4) O2—N2—C7 104.3 (2)
C24—C25—H25 119.5 C8—O2—N2 102.2 (3)
N1—C2—C3—C4 −47.1 (5) O2—C8—C81—C82 −21.0 (5)
C2—C3—C4—O1 −145.8 (4) C5—C8—C81—C82 96.2 (4)
C2—C3—C4—C5 34.6 (5) O2—C8—C81—C86 161.1 (3)
O1—C4—C5—C6 142.2 (3) C5—C8—C81—C86 −81.7 (5)
C3—C4—C5—C6 −38.3 (4) C86—C81—C82—C83 0.5 (6)
O1—C4—C5—C8 17.9 (5) C8—C81—C82—C83 −177.4 (4)
C3—C4—C5—C8 −162.6 (3) C81—C82—C83—C84 −0.4 (7)
O1—C4—C5—C7 −96.3 (4) C82—C83—C84—C85 0.3 (7)
C3—C4—C5—C7 83.3 (4) C83—C84—C85—C86 −0.4 (7)
C4—C5—C6—N1 57.2 (4) C82—C81—C86—C85 −0.6 (6)
C8—C5—C6—N1 −179.7 (3) C8—C81—C86—C85 177.4 (3)
C7—C5—C6—N1 −67.4 (4) C84—C85—C86—C81 0.5 (7)
C4—C5—C7—N2 116.1 (3) N1—C9—C91—C92 −139.4 (4)
C6—C5—C7—N2 −122.4 (3) C10—C9—C91—C92 97.5 (5)
C8—C5—C7—N2 −3.2 (3) N1—C9—C91—C96 44.8 (5)
C4—C5—C7—C71 −6.9 (4) C10—C9—C91—C96 −78.4 (5)
C6—C5—C7—C71 114.5 (3) C96—C91—C92—C93 0.2 (7)
C8—C5—C7—C71 −126.3 (3) C9—C91—C92—C93 −175.9 (4)
C4—C5—C8—O2 −147.5 (3) C91—C92—C93—C94 −0.9 (9)
C6—C5—C8—O2 90.5 (4) C92—C93—C94—C95 −0.4 (9)
C7—C5—C8—O2 −26.0 (4) C93—C94—C95—C96 2.3 (9)
C4—C5—C8—C81 92.2 (4) C94—C95—C96—C91 −3.1 (8)
C6—C5—C8—C81 −29.7 (5) C92—C91—C96—C95 1.8 (7)
C7—C5—C8—C81 −146.2 (3) C9—C91—C96—C95 177.8 (4)
C26—C21—C22—C23 0.2 (6) C5—C6—N1—C2 −71.9 (4)
N2—C21—C22—C23 176.7 (4) C5—C6—N1—C9 166.2 (3)
C21—C22—C23—C24 0.9 (6) C3—C2—N1—C6 64.9 (4)
C22—C23—C24—C25 −1.0 (6) C3—C2—N1—C9 −173.7 (3)
C23—C24—C25—C26 0.1 (7) C91—C9—N1—C6 170.6 (3)
C22—C21—C26—C25 −1.1 (6) C10—C9—N1—C6 −67.2 (4)
N2—C21—C26—C25 −177.6 (4) C91—C9—N1—C2 52.0 (4)
C24—C25—C26—C21 1.0 (7) C10—C9—N1—C2 174.1 (3)
N2—C7—C71—C76 −40.4 (5) C26—C21—N2—O2 −21.8 (4)
C5—C7—C71—C76 78.0 (4) C22—C21—N2—O2 161.8 (3)
N2—C7—C71—C72 143.3 (4) C26—C21—N2—C7 −138.4 (3)
C5—C7—C71—C72 −98.4 (4) C22—C21—N2—C7 45.2 (5)
C76—C71—C72—C73 −2.7 (6) C71—C7—N2—C21 −85.5 (4)
C7—C71—C72—C73 173.8 (4) C5—C7—N2—C21 149.1 (3)
C71—C72—C73—C74 1.6 (7) C71—C7—N2—O2 156.3 (3)
C72—C73—C74—C75 1.0 (8) C5—C7—N2—O2 31.0 (3)
C73—C74—C75—C76 −2.5 (7) C81—C8—O2—N2 170.9 (3)
C74—C75—C76—C71 1.4 (7) C5—C8—O2—N2 46.2 (3)
C72—C71—C76—C75 1.2 (6) C21—N2—O2—C8 −173.9 (3)
C7—C71—C76—C75 −175.2 (4) C7—N2—O2—C8 −49.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8···O1 0.98 2.35 2.775 (5) 106
C26—H26···O2 0.93 2.29 2.623 (5) 101
C82—H82···O2 0.93 2.43 2.757 (5) 101
C3—H3A···Cg1 0.97 2.90 3.659 (5) 136
C2—H2A···Cg2i 0.97 2.93 3.707 (5) 138
C74—H74···Cg3ii 0.93 2.96 3.722 (6) 141

Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) −x+3/2, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2540).

References

  1. Alibés, R., Blanco, P., de March, P., Figueredo, M., Font, J., Álvarez-Larena, A. & Piniella, J. F. (2003). Tetrahedron Lett.44, 523–525.
  2. Ali Dondas, H., Cummins, J. E., Grigg, R. & Thornton-Pett, M. (2001). Tetrahedron, 57, 7951–7964.
  3. Blanarikova-Hlobilova, I., Pronayova, N. & Koman, M. (2003). Collect. Czech. Chem. Commun.68, 951–964.
  4. Carda, M., Portoles, R., Murga, J., Uriel, S., Marco, J. A., Domingo, L. R., Zaragoza, R. J. & Roeper, H. (2000). J. Org. Chem.65, 7000–7009. [DOI] [PubMed]
  5. Carruthers, W. (1990). Cycloaddition Reactions in Organic Synthesis, ch. 6. Oxford: Pergamon.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  7. Enraf–Nonius (1994). CAD-4 EXPRESS Version 5.0. Enraf–Nonius, Delft, The Netherlands.
  8. Harms, K. & Wocadlo, S. (1996). XCAD4 University of Marburg, Germany.
  9. Herrera, R., Nagarajan, A., Morales, M. A., Mendez, F., Jimenez-Vazquez, H. A., Zepeda, L. G. & Tamariz, J. (2001). J. Org. Chem.66, 1252–1263. [DOI] [PubMed]
  10. Huisgen, R. (1963). Angew. Chem. Int. Ed. Engl.2, 565–572.
  11. Ishar, M. P. S., Singh, G., Kumar, K. & Singh, R. (2000). Tetrahedron, 56, 7817–7828.
  12. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  13. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  14. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807067256/ci2540sup1.cif

e-64-0o343-sup1.cif (25.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067256/ci2540Isup2.hkl

e-64-0o343-Isup2.hkl (129.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES