Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1980 Aug;40(2):231–234. doi: 10.1128/aem.40.2.231-234.1980

Effects of pesticides on the fatty acid and phospholipid composition of Escherichia coli.

S B Rosas, M Secco, N E Ghittoni
PMCID: PMC291557  PMID: 7008691

Abstract

Cells of Escherichia coli contained an altered phospholipid and fatty acid composition when grown in the presence of some pesticides. Whereas parathion increased the concentration of all phospholipid species without changes in their polar head groups. DDT (dichlorodiphenyltrichloroethane) decreased the proportion of neutral serine-derived phosphatides and dieldrin decreased the proportion of negatively charged phospholipids. The saturated/unsaturated plus cyclopropane fatty acid ratio was increased in all cases. The changes suggested that cells adapted their membrane lipids to compensate for the presence of pesticides in the environment.

Full text

PDF
231

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames G. F. Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. J Bacteriol. 1968 Mar;95(3):833–843. doi: 10.1128/jb.95.3.833-843.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Antunes-Madeira M. C., Madeira V. M. Interaction of insecticides with lipid membranes. Biochim Biophys Acta. 1979 Feb 2;550(3):384–392. doi: 10.1016/0005-2736(79)90143-3. [DOI] [PubMed] [Google Scholar]
  3. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  4. Congregado F., Simon-Pujol D., Juárez A. Effect of two organophosphorus insecticides on the phosphate-dissolving soil bacteria. Appl Environ Microbiol. 1979 Jan;37(1):169–171. doi: 10.1128/aem.37.1.169-171.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cook A. M., Daughton C. G., Alexander M. Phosphorus-containing pesticide breakdown products: quantitative utilization as phosphorus sources by bacteria. Appl Environ Microbiol. 1978 Nov;36(5):668–672. doi: 10.1128/aem.36.5.668-672.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dancey G. F., Shapiro B. M. Specific phospholipid requirement for activity of the purified respiratory chain NADH dehydrogenase of Escherichia coli. Biochim Biophys Acta. 1977 May 25;487(2):368–377. doi: 10.1016/0005-2760(77)90013-3. [DOI] [PubMed] [Google Scholar]
  7. Dodge J. T., Phillips G. B. Composition of phospholipids and of phospholipid fatty acids and aldehydes in human red cells. J Lipid Res. 1967 Nov;8(6):667–675. [PubMed] [Google Scholar]
  8. Esfahani M., Rudkin B. B., Cutler C. J., Waldron P. E. Lipid-protein interactions in membranes: interaction of phospholipids with respiratory enzymes of Escherichia coli membrane. J Biol Chem. 1977 May 25;252(10):3194–3198. [PubMed] [Google Scholar]
  9. Fishbein L. Chromatographic and biological aspects of DDT and its metabolites. J Chromatogr. 1974 Mar 27;98(1):177–251. doi: 10.1016/s0021-9673(00)84785-8. [DOI] [PubMed] [Google Scholar]
  10. Hawrot E., Kennedy E. P. Biogenesis of membrane lipids: mutants of Escherichia coli with temperature-sensitive phosphatidylserine decarboxylase. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1112–1116. doi: 10.1073/pnas.72.3.1112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ingram L. O. Adaptation of membrane lipids to alcohols. J Bacteriol. 1976 Feb;125(2):670–678. doi: 10.1128/jb.125.2.670-678.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kimura H., Futai M. Effects of phospholipids on L-lactate dehydrogenase from membranes of Escherichia coli. Activation and stabilization of the enzyme with phospholipids. J Biol Chem. 1978 Feb 25;253(4):1095–1110. [PubMed] [Google Scholar]
  13. Kramzar G. R., Lynch D. L. A qualitative and quantitative study of the fatty acid composition of selected micro-organisms. Microbios. 1976;17(67):7–16. [PubMed] [Google Scholar]
  14. Kundig W., Roseman S. Sugar transport. II. Characterization of constitutive membrane-bound enzymes II of the Escherichia coli phosphotransferase system. J Biol Chem. 1971 Mar 10;246(5):1407–1418. [PubMed] [Google Scholar]
  15. Raetz C. R. Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli. Microbiol Rev. 1978 Sep;42(3):614–659. doi: 10.1128/mr.42.3.614-659.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sandermann H., Jr Regulation of membrane enzymes by lipids. Biochim Biophys Acta. 1978 Sep 29;515(3):209–237. doi: 10.1016/0304-4157(78)90015-1. [DOI] [PubMed] [Google Scholar]
  17. Schauberger C. W., Wildman R. B. Accumulation of aldrin and dieldrin by blue-green algae and related effects on photosynthetic pigments. Bull Environ Contam Toxicol. 1977 May;17(5):534–541. doi: 10.1007/BF01685975. [DOI] [PubMed] [Google Scholar]
  18. Siddaramappa R., Rajaram K. P., Sethunathan N. Degradation of parathion by bacteria isolated from flooded soil. Appl Microbiol. 1973 Dec;26(6):846–849. doi: 10.1128/am.26.6.846-849.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tu C. M., Miles J. R. Interactions between insecticides and soil microbes. Residue Rev. 1976;64:17–65. doi: 10.1007/978-1-4684-7059-8_2. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES