Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1980 Sep;40(3):437–445. doi: 10.1128/aem.40.3.437-445.1980

Role of Microorganisms in the Consumption and Production of Atmospheric Carbon Monoxide by Soil

Ralf Conrad 1, Wolfgang Seiler 1
PMCID: PMC291601  PMID: 16345624

Abstract

Consumption and production of atmospheric CO was measured under field conditions in three different types of soil. CO was consumed by an apparent first-order reaction and produced by an apparent zero-order reaction, resulting in a dynamic equilibrium with the consumption of atmospheric CO as the net reaction. CO consumption was higher in summer than in winter. Laboratory experiments on five different soil types showed that CO consumption was strongly inhibited by the presence of streptomycin or cycloheximide (Actidione), or both. Thus, eucaryotic as well as procaryotic microorganisms were apparently responsible for the observed CO consumption. The aerobic carboxydobacterium Pseudomonas carboxydovorans added to sterile soil was able to utilize the low amounts (ca. 0.7 ppmv) of CO present in laboratory air. CO was consumed by soil under aerobic as well as anaerobic conditions. Anaerobic preincubation of the soil stimulated the anaerobic CO consumption and reduced the aerobic CO consumption. In contrast to CO consumption, CO production was stimulated by autoclaving, by ultraviolet-irradiation, by fumigation with NH3 or CHCl3, by treatment with streptomycin or cycloheximide or both, by addition of NaCN, NaN3, or Na2HAsO4 (or all three) in the presence of glucose under an atmosphere of pure oxygen, or by a drying and rewetting procedure. The consumption of atmospheric CO by soil is a microbial process, but the production of CO is apparently not a metabolic process.

Full text

PDF
437

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartholomew G. W., Alexander M. Microbial metabolism of carbon monoxide in culture and in soil. Appl Environ Microbiol. 1979 May;37(5):932–937. doi: 10.1128/aem.37.5.932-937.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bauer K., Conrad R., Seiler W. Photooxidative production of carbon monoxide by phototrophic microorganisms. Biochim Biophys Acta. 1980 Jan 4;589(1):46–55. doi: 10.1016/0005-2728(80)90131-0. [DOI] [PubMed] [Google Scholar]
  3. Bouley G., Godin J., Roussel A., Girard F. Mise en évidence d'une production importante de monoxyde de carbone par des milleux de culture bactériologiques stériles. C R Acad Sci Hebd Seances Acad Sci D. 1971 Mar 8;272(10):1459–1461. [PubMed] [Google Scholar]
  4. CHAPPELLE E. W. Carbon monoxide oxidation by algae. Biochim Biophys Acta. 1962 Jul 30;62:45–62. doi: 10.1016/0006-3002(62)90491-2. [DOI] [PubMed] [Google Scholar]
  5. Daniels L., Fuchs G., Thauer R. K., Zeikus J. G. Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol. 1977 Oct;132(1):118–126. doi: 10.1128/jb.132.1.118-126.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Diekert G. B., Thauer R. K. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J Bacteriol. 1978 Nov;136(2):597–606. doi: 10.1128/jb.136.2.597-606.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Engel R. R., Matsen J. M., Chapman S. S., Schwartz S. Carbon monoxide production from heme compounds by bacteria. J Bacteriol. 1972 Dec;112(3):1310–1315. doi: 10.1128/jb.112.3.1310-1315.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Engel R. R., Modler S., Matsen J. M., Petryka Z. J. Carbon monoxide production from hydroxocobalamin by bacteria. Biochim Biophys Acta. 1973 Jun 20;313(1):150–155. doi: 10.1016/0304-4165(73)90195-5. [DOI] [PubMed] [Google Scholar]
  9. Fuchs G., Schnitker U., Thauer R. K. Carbon monoxide oxidation by growing cultures of Clostridium pasteurianum. Eur J Biochem. 1974 Nov 1;49(1):111–115. doi: 10.1111/j.1432-1033.1974.tb03816.x. [DOI] [PubMed] [Google Scholar]
  10. Inman R. E., Ingersoll R. B., Levy E. A. Soil: a natural sink for carbon monoxide. Science. 1971 Jun 18;172(3989):1229–1231. doi: 10.1126/science.172.3989.1229. [DOI] [PubMed] [Google Scholar]
  11. Kirkconnell S., Hegeman G. D. Mechanism of oxidation of carbon monoxide by bacteria. Biochem Biophys Res Commun. 1978 Aug 29;83(4):1584–1587. doi: 10.1016/0006-291x(78)91402-x. [DOI] [PubMed] [Google Scholar]
  12. Loewus M. W., Delwiche C. C. Carbon Monoxide Production by Algae. Plant Physiol. 1963 Jul;38(4):371–374. doi: 10.1104/pp.38.4.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Meyer O., Schlegel H. G. Oxidation of carbon monoxide in cell extracts of Pseudomonas carboxydovorans. J Bacteriol. 1979 Feb;137(2):811–817. doi: 10.1128/jb.137.2.811-817.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Meyer O., Schlegel H. G. Reisolation of the carbon monoxide utilizing hydrogen bacterium Pseudomonas carboxydovorans (Kistner) comb. nov. Arch Microbiol. 1978 Jul;118(1):35–43. doi: 10.1007/BF00406071. [DOI] [PubMed] [Google Scholar]
  15. Obrig T. G., Culp W. J., McKeehan W. L., Hardesty B. The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes. J Biol Chem. 1971 Jan 10;246(1):174–181. [PubMed] [Google Scholar]
  16. Radler F., Greese K. D., Bock R., Seiler W. Die Bildung von Spuren von Kohlenmonoxid durch Saccharomyces cerevisiae und andere Mikroorganismen. Arch Microbiol. 1974;100(3):243–252. doi: 10.1007/BF00446321. [DOI] [PubMed] [Google Scholar]
  17. Troxler R. F., Dokos J. M. Formation of carbon monoxide and bile pigment in red and blue-green algae. Plant Physiol. 1973 Jan;51(1):72–75. doi: 10.1104/pp.51.1.72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Troxler R. F. Synthesis of bile pigments in plants. Formation of carbon monoxide and phycocyanobilin in wild-type and mutant strains of the alga, Cyanidium caldarium. Biochemistry. 1972 Nov 7;11(23):4235–4242. doi: 10.1021/bi00773a007. [DOI] [PubMed] [Google Scholar]
  19. Uffen R. L. Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3298–3302. doi: 10.1073/pnas.73.9.3298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. WESTLAKE D. W., ROXBURGH J. M., TALBOT G. Microbial production of carbon monoxide from flavonoids. Nature. 1961 Feb 11;189:510–511. doi: 10.1038/189510a0. [DOI] [PubMed] [Google Scholar]
  21. WILLIAMS S. T., DAVIES F. L. USE OF ANTIBIOTICS FOR SELECTIVE ISOLATION AND ENUMERATION OF ACTINOMYCETES IN SOIL. J Gen Microbiol. 1965 Feb;38:251–261. doi: 10.1099/00221287-38-2-251. [DOI] [PubMed] [Google Scholar]
  22. Wilson D. F., Swinnerton J. W., Lamontagne R. A. Production of carbon monoxide and gaseous hydrocarbons in seawater: relation to dissolved organic carbon. Science. 1970 Jun 26;168(3939):1577–1579. doi: 10.1126/science.168.3939.1577. [DOI] [PubMed] [Google Scholar]
  23. YAGI T. Enzymic oxidation of carbon monoxide. Biochim Biophys Acta. 1958 Oct;30(1):194–195. doi: 10.1016/0006-3002(58)90263-4. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES