Abstract
A nationwide study aimed to identify the extended-spectrum β-lactamases (ESBLs), metallo-β-lactamases (MBLs), and extended-spectrum oxacillinases (ES-OXAs) in a French collection of 140 clinical Pseudomonas aeruginosa isolates highly resistant to ceftazidime. Six ESBLs (PER-1, n = 3; SHV-2a, n = 2; VEB-1a, n = 1), four MBLs (VIM-2, n = 3; IMP-18, n = 1), and five ES-OXAs (OXA-19, n = 4; OXA-28, n = 1) were identified in 13 isolates (9.3% of the collection). The prevalence of these enzymes is still low in French clinical P. aeruginosa isolates but deserves to be closely monitored.
Pseudomonas aeruginosa could potentially become resistant to any of the antibiotics used to treat Gram-negative nosocomial infections. The development of resistance to β-lactams in this opportunistic pathogen results from mutations leading to stable overexpression of intrinsic cephalosporinase AmpC, overproduction of efflux systems, reduced permeability, acquisition of transferable genes coding for a variety of secondary β-lactamases, or a combination of these mechanisms (21). A growing number of Ambler class A extended-spectrum β-lactamases (ESBLs), class B carbapenemases (metallo-β-lactamases [MBLs]), and class D extended-spectrum oxacillinases (ES-OXAs) have been reported in clinical strains of P. aeruginosa (14, 18, 19, 34, 40). The present multicenter study gave a snapshot of these acquired enzymes in a French collection of 140 P. aeruginosa isolates highly resistant to ceftazidime.
During a 1-month period (June 2007), 85 hospital laboratories participating in the surveillance networks affiliated with ONERBA (Observatoire National de l'Epidémiologie de la Résistance Bactérienne aux Antibiotiques) collected nonredundant strains of P. aeruginosa resistant to ceftazidime (Cazr) (as defined by the Comité de l'Antibiogramme de la Société Française de Microbiologie [CA-SFM] in 2006 [12]), except those obtained from screening samples and cystic fibrosis patients. The susceptibility tests were performed in each laboratory according to their routine testing methods. All isolates showing an inhibition zone of <15 mm around the ceftazidime-containing disk (30 μg) or with a MIC of ceftazidime of >32 μg/ml were sent to a central laboratory for further investigation. In addition, the total number of patients with at least one clinical specimen positive for P. aeruginosa as well as the number of hospitalization days was recorded in each participating center during the study period. The central laboratory confirmed bacterial identification by using API32GN strips (bioMérieux, Craponnes, France) and determined the MICs of eight antipseudomonal antibiotics by the conventional 2-fold dilution method in agar (26). The β-lactamase contents of the strains were first analyzed by isoelectric focusing (IEF) (23) and then confirmed by gene sequencing with consensus primers targeting the blaTEM, blaPSE, blaSHV, blaPER, blaVEB, blaGES, blaBEL, blaCTX-M, blaVIM, blaSPM, blaOXA-I group, blaOXA-II group, blaOXA-III group, and blaOXA-18 genes (1, 3, 5, 6, 24, 25, 28, 30-32, 35, 38). Genes blaIMP, blaGIM, and blaOXA-9, respectively, were also specifically amplified with primers IMP2004-A and IMP2004-B (5′-ACAYGGYTTGGTTGTTCTTG-3′ and 5′-GGTTTAAYAAAACAACCACC-3′, respectively), GIM-A and GIM-B (5′-GGAGTATATCTTCATACCTCC-3′ and 5′-TTCCAACTTTGCCATGCCCC-3′, respectively), and OXA9A and OXA9B (5′-CCGAGAGATCGCACATACAA-3′ and 5′-CCCATCAACACGGGTAATTC-3′, respectively). Class 1 integrons were amplified in the isolates producing ESBLs, MBLs, and ES-OXAs with consensus primers (20) for content analysis and blaESBL, blaMBL, and blaES-OXA localization. Purified amplicons were sequenced on both strands, and their nucleotide sequences were compared and aligned with reference sequences using the NCBI BLAST program (2). Clonality of the Cazr isolates was investigated by pulsed-field gel electrophoresis (PFGE) of DraI macrorestricted genomic DNA (36, 37).
Incidence of P. aeruginosa infections.
Eighty-five hospital laboratories from 70 cities in France were enrolled in the study (Fig. 1). With 58,022 beds, the participating hospitals accounted for a total annual activity of 17 million hospital days. The total catchment area population was 8 million people, which corresponds to 13% of the French population. Public (university-affiliated or general) hospitals accounted for 95% of the hospital beds. During the 1-month study, the participating centers isolated 2,326 nonredundant isolates of P. aeruginosa, giving an attack rate of 0.76 cases per 100 admissions or a global incidence of 1.58 per 1,000 patient days. One hundred forty of these isolates (6.0%) appeared to be resistant to ceftazidime (MIC of >32 μg/ml). The resistance rates were similar between the university-affiliated (6.4%) and general (5.3%) hospitals, for a global incidence of Cazr P. aeruginosa isolates of 0.095 per 1,000 patient days.
FIG. 1.
Map of France, showing the 85 sites included in the study and the localization of isolates of P. aeruginosa producing ESBLs, MBLs, and ES-OXAs. An enlarged map of the Ile-de-France region is provided at the upper left. Labels indicate the town of isolation, the nature of the enzymes, and the number of isolates.
Secondary β-lactamases in Cazr P. aeruginosa.
The β-lactamases detected in the 140 Cazr isolates are indicated in Table 1. Six ESBLs, four MBLs, and five ES-OXAs were identified in 13 isolates, for an overall prevalence of 9.3% of the 140 Cazr isolates and 0.6% of the total isolates. Table 2 gives the resistance levels to antipseudomonal compounds and characteristics of the isolates producing these enzymes.
TABLE 1.
Secondary β-lactamases detected in the collected P. aeruginosa isolates
| Secondary β-lactamase(s)a | No. of isolates |
|---|---|
| None | 110 |
| TEM-2 | 5 |
| PSE-1 | 4 |
| OXA-19 | 3 |
| OXA-56 | 3 |
| OXA-10 | 2 |
| OXA-9 | 2 |
| SHV-2a | 2 |
| PSE-1, OXA-10 | 1 |
| OXA-19, OXA-2 | 1 |
| OXA-28 | 1 |
| PER-1 | 1 |
| VEB-1a, OXA-10 | 1 |
| VIM-2 | 1 |
| IMP-18 | 1 |
| OXA-30, PSE-1, VIM-2, PER-1 | 1 |
| OXA-10, PSE-1, VIM-2, PER-1 | 1 |
Secondary β-lactamases with an extended spectrum are shown in boldface type. In a given strain, the β-lactamases are ordered according to decreasing pI.
TABLE 2.
Epidemiological data, clonal lineages, and resistance phenotypes of P. aeruginosa isolates producing ESBLs, MBLs, and ES-OXAs
| Isolate | Origin | β-Lactamase(s) (pI)a | Isolation site | MIC (μg/ml)b |
PFGE pattern | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Tic | Tzpc | Caz | Fep | Atm | Ipm | Amk | Cip | |||||
| P9 | Epinal | OXA-19 (7.5) | Wound | 512 | 128 | 256 | 64 | 16 | 16 | 16 | 64 | A |
| P11 | Epinal | OXA-19 (7.5) | Wound | 256 | 64 | 256 | 32 | 16 | 8 | 8 | 32 | A |
| P122 | Nancy | OXA-19 (7.5) | Sputum | 256 | 64 | 256 | 32 | 16 | 8 | 8 | 64 | A |
| P66 | Aulnay sous Bois | OXA-2 (7.7), OXA-19 (7.6) | Blood | 512 | 32 | 64 | 16 | 16 | 1 | 128 | 128 | C |
| P174 | Besançon | OXA-28 (7.8) | Blood | 128 | 128 | 256 | 32 | 32 | 4 | 16 | 128 | E |
| P19 | Paris | OXA-30 (7.2), PSE-1 (5.7), VIM-2 (5.6), PER-1 (5.3) | Urine | >512 | 256 | 256 | 128 | 128 | 128 | 64 | 256 | F |
| P22 | Paris | OXA-10 (6.3), PSE-1 (5.7), VIM-2 (5.6), PER-1 (5.3) | Urine | >512 | 256 | 256 | 128 | 256 | 128 | 64 | 256 | F |
| P170 | Besançon | PER-1 (5.1) | Urine | 512 | 128 | 256 | 64 | 128 | 4 | 32 | 64 | G |
| P60 | Cambrai | SHV-2a (7.4) | Sputum | >512 | 128 | 64 | 64 | 32 | 1 | 32 | 32 | H |
| P102 | Lille | SHV-2a (7.4) | Urine | >512 | 128 | 64 | 64 | 32 | 16 | 128 | 32 | H |
| P151 | Paris | VEB-1a (7.3), OXA-10 (6.3) | ETAe | >512 | 256 | >512 | >512 | >512 | 32 | 128 | 512 | I |
| P67 | Auxerre | VIM-2 (5.6) | Urine | >512 | 32 | 128 | 64 | 32 | 512 | 32 | 128 | J |
| P85 | Montpellier | IMP-18d | Wound | >512 | 128 | >512 | 256 | 16 | 64 | >512 | 128 | K |
bla genes borne by class 1 integrons are indicated in boldface type. The gene cassettes and order for these isolates are as follows, with GenBank accession numbers given in parentheses: for P9, P11, and P122, aacA4 and blaOXA-19 (FJ906752); for P66, blaOXA-2 and blaOXA-19; for P174, aacA4 and blaOXA-28 (FJ374756); for P67, blaVIM-2; and for P85, dfrA22 and blaIMP-18.
Tic, ticarcillin; Tzp, piperacillin-tazobactam; Caz, ceftazidime; Fep, cefepime; Atm, aztreonam; Ipm, imipenem; Amk, amikacin; Cip, ciprofloxacin. Drug susceptibility according to current NCCLS/CLSI breakpoints (26) is shown in boldface type: for Tic, MICs of ≤64 μg/ml; for Tzp, MICs of ≤64 μg/ml; for Caz, MICs of ≤8 μg/ml; for Fep, MICs of ≤8 μg/ml; for Atm, MICs of ≤8 μg/ml; for Ipm, MICs of ≤4 μg/ml; for Amk, MICs of ≤16 μg/ml; and for Cip, MICs of ≤1 μg/ml. The susceptible reference strain P. aeruginosa ATCC 27853 was used as the internal quality control.
MIC of piperacillin with a fixed concentration (4 μg/ml) of tazobactam.
The pI value for IMP-18 has not been reported in the literature. IEF experiments for this isolate showed a smear between pI 5.0 and 7.5.
ETA, endotracheal aspiration.
In our series, the overall prevalence of P. aeruginosa strains producing ESBLs or MBLs remains relatively low, far below that observed in some Asian countries (4, 10), Latin America (9), or Turkey (27) but in concordance with those observed in previous studies in France (7, 8, 13, 15-17, 22, 29, 39).
However, we showed here an unexpected proportion of P. aeruginosa strains producing ES-OXAs (OXA-19 and OXA-28). As expected, all of the blaES-OXA genes were borne by class 1 integrons (Table 2) (33). Some new extended-spectrum oxacillinases have recently been described in several European countries (19, 33). Altogether, these data suggest the possible emergence of this class of enzymes in P. aeruginosa. blaVIM and blaVEB genes are usually carried on class 1 integrons (34, 40). However, blaVIM-2, in isolates P19 and P22, and blaVEB-1, in isolate P151, have not been associated with such genetic determinants.
Genotyping.
One hundred thirty-seven isolates (3 isolates were nontypeable using PFGE) clustered in 113 PFGE patterns as follows: 98 unique patterns, 12 patterns including isolates from two patients, 1 pattern including isolates from 3 patients, 1 pattern including isolates from 4 patients, and 1 pattern including isolates from 8 patients. In most cases, the clonally related isolates were recovered from the same hospital or from hospitals in the same region. Regarding the isolates producing ESBLs, MBLs, or ES-OXAs, genotypic analysis revealed that a clone (PFGE pattern A) producing OXA-19 had spread in two hospitals (Nancy and Epinal, France, 70 km apart). The spread of this clone has been described in a recent publication (11). A second clone (PFGE pattern F), producing both PER-1 and VIM-2, was isolated in different wards of the same university hospital in Paris, France, while a third clone (PFGE pattern H), producing SHV-2a, was detected in two other hospitals in the north of France (Lille and Cambrai, 68 km apart) (Fig. 1).
Since most ES-OXAs are poorly inhibited by clavulanate, used in screening tests (14), Pseudomonas aeruginosa strains expressing these enzymes remain difficult to recognize in routine testing and require genotypic methods. ES-OXAs have been described to occur sporadically, but their spread in the clinical setting remains poorly understood and probably underestimated. Our data stress the need for a simple and reliable routine test able to detect ESBLs, MBLs, and ES-OXAs produced by clinical P. aeruginosa strains. This test will be helpful to rapidly implement control measures for preventing the spread of multidrug-resistant strains harboring emerging resistance mechanisms.
Acknowledgments
We are grateful to the following biologists for their participation in this survey: M. A. Aby (Forbach), A. Akpabie (Limeil Brevannes), J. Auguste (Le Creusot), H. Banctel (Saint-Brieuc), Z. Benseddik (Chartres), L. Berardi-Grassias (Mantes la Jolie), Z. Berkane (Gray), F. Bessis (Cherbourg), P. Boex (Lons le Saunier), P. Boquet (Nice), P. Brisou (Toulon), J. P. Canonne (Lens), B. Cattier (Amboise), C. Cattoen (Valenciennes), L. Cavalié (Toulouse), P. Chantelat (Vesoul), H. Chardon (Aix en Provence), D. Christmann (Mont Saint Martin), Y. Costa (Lagny), M. Costi (Strasbourg), J. Y. Darreau (Angers), A. Decoster (Lomme), D. Delannoy (Cosne sur Loire), J. M. Delarbre (Mulhouse), D. Descamps (Béthune), B. Dubourdieu (Rodez), B. Dumoulard (Cambrai), C. Eloy (Troyes), C. Emery (Champagnole), V. Esteve (Orsay), F. Evreux (Le Havre), C. Fabe (Bergerac), R. Fabre (Saint Mandé), J. Faibis (Meaux), N. Fortineau (Le Kremlin-Bicêtre), D. Gally (Dijon), E. Garnotel (Marseille), J. Gaudiau (Fontaine les Dijon), F. Gavand (Louhans), F. Geffroy (Quimper), C. Giaimis (Thionville), P. Girardo (Lyon), A. Gombert (Colmar), M. Grass (Sens), N. Graveline (Armentières), F. Grosbost (La Ferté Bernard), P. Gross (Sentheim), M. Guibert (Clamart), S. Hendricx (Douai), V. Hervé (Clamart), B. Heym (Boulogne), F. Hohweiller (Chatillon/Seine Montbard), S. Honore (Auxerre), M. Iehl-Robert (Besançon), R. Jacquel (Héricourt), D. Jager (Forbach), D. Jan (Laval), H. Jean-Pierre (Montpellier), G. Julienne (Belfort), M. E. Juvin (Nantes), J. P. Lafargue (Dax), V. Lalande (Paris), P. Laudat (Tours), A. Le Coustumier (Cahors), E. Lecaillon (Perpignan), C. Lemblé (Sélestat), P. Lièvre (Saint Nazaire), A. Lozniewski (Nancy), O. Maingon (Dijon), A. Mangin (Nancy), J. Maugein (Bordeaux), D. Maurel (Villefranche de Rouergue), M. Menouar (Montreuil), C. Meyer (Sarreguemines), C. Michel (Navenne), G. Michel (Saint Dié), L. Mihaila (Villejuif), E. Morin (Orléans), P. Moritz (Lure), J. Nizon (Paris), M. N. Noulard (Arras), J. P. Paubel (Amboise), Y. Pean (Paris), F. Pechier (Besançon), P. Petitjean (Besançon), D. Pierrejean (Auch), P. Pierrot (Mulhouse), C. Pipoz (Masevaux), I. Podglajen (Paris), I. Poilane (Bondy), H. Porcheret (Aulnay sous Bois), B. Pottecher (Strasbourg), M. C. Regent (Bainville sur Madon), J. Riahi (Paris), S. Robardet (Pontarlier), J. Robert (Paris), E. Ronco (Garches), M. Roussel-Delvallez (Lille), J. Royo (Decazeville), A. Scanvic (Argenteuil), V. Schuh (Strasbourg), O. Schwendenmann (Epinal), B. Soullié (Bordeaux), M. Szulc (Schiltigheim), M. Urschel (St. Avold), A. Vachée (Roubaix), N. van der Mee (Tours), V. Morange (Tours), C. Varache (Le Mans), M. Vasseur (Maubeuge), C. Venot (Saintes), P. Verger (Saint Martin d'Heres), A. Verhaeghe (Dunkerque), V. Vernet Garnier (Reims), J. P. Verquin (Reims), M. Villemain (Aurillac), S. Weber (Strasbourg), and J. R. Zahar (Paris).
The members of the scientific committee of ONERBA (Observatoire National de l'Epidémiologie de la Résistance Bactérienne aux Antibiotiques) in 2007 were as follows: X. Bertrand, Y. Costa, J.-M. Delarbre, A. Dubouix, R. Fabre, E. Jouy, P. Laudat, J. Y. Madec, D. Meunier, P. Pina, J. Robert, D. Trystram, A. Vachée, and E. Varon.
The National Reference Center for Antibiotic Resistance in Besançon, France, is funded by the French Ministry of Health via the Institut de Veille Sanitaire.
We thank Hélène Varlet for her technical assistance. We are also grateful to Fabrice Poncet from the Institut Fédératif de Recherche IFR133, Besançon, France, for his expertise in DNA sequencing.
Footnotes
Published ahead of print on 14 June 2010.
REFERENCES
- 1.al Naiemi, N., B. Duim, and A. Bart. 2006. A CTX-M extended-spectrum β-lactamase in Pseudomonas aeruginosa and Stenotrophomonas maltophilia. J. Med. Microbiol. 55:1607-1608. [DOI] [PubMed] [Google Scholar]
- 2.Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410. [DOI] [PubMed] [Google Scholar]
- 3.Arlet, G., and A. Philippon. 1991. Construction by polymerase chain reaction and use of intragenic DNA probes for three main types of transferable β-lactamases (TEM, SHV, CARB). FEMS Microbiol. Lett. 66:19-25. [DOI] [PubMed] [Google Scholar]
- 4.Azim, A., M. Dwivedi, P. B. Rao, A. K. Baronia, R. K. Singh, K. N. Prasad, B. Poddar, A. Mishra, M. Gurjar, and T. N. Dhole. 2010. Epidemiology of bacterial colonization at ICU admission with emphasis on extended-spectrum β-lactamases and metallo-β-lactamase producing gram-negative bacteria—an Indian experience. J. Med. Microbiol. doi: 10.1099/jmm.0.018085-0. [DOI] [PubMed]
- 5.Babini, G. S., and D. M. Livermore. 2000. Are SHV β-lactamases universal in Klebsiella pneumoniae? Antimicrob. Agents Chemother. 44:2230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Bert, F., C. Branger, and N. Lambert-Zechovsky. 2002. Identification of PSE and OXA β-lactamase genes in Pseudomonas aeruginosa using PCR-restriction fragment length polymorphism. J. Antimicrob. Chemother. 50:11-18. [DOI] [PubMed] [Google Scholar]
- 7.Brasme, L., P. Nordmann, F. Fidel, M. F. Lartigue, O. Bajolet, L. Poirel, D. Forte, V. Vernet-Garnier, J. Madoux, J. C. Reveil, C. Alba-Sauviat, I. Baudinat, P. Bineau, C. Bouquigny-Saison, C. Eloy, C. Lafaurie, D. Simeon, J. P. Verquin, F. Noel, C. Strady, and C. De Champs. 2007. Incidence of class A extended-spectrum β-lactamases in Champagne-Ardenne (France): a 1 year prospective study. J. Antimicrob. Chemother. 60:956-964. [DOI] [PubMed] [Google Scholar]
- 8.Cavallo, J. D., D. Hocquet, P. Plésiat, R. Fabre, and M. Roussel-Delvallez. 2007. Susceptibility of Pseudomonas aeruginosa to antimicrobials: a 2004 French multicentre hospital study. J. Antimicrob. Chemother. 59:1021-1024. [DOI] [PubMed] [Google Scholar]
- 9.Celenza, G., C. Pellegrini, M. Caccamo, B. Segatore, G. Amicosante, and M. Perilli. 2006. Spread of blaCTX-M-type and blaPER-2 β-lactamase genes in clinical isolates from Bolivian hospitals. J. Antimicrob. Chemother. 57:975-978. [DOI] [PubMed] [Google Scholar]
- 10.Chayakulkeeree, M., P. Junsriwong, A. Keerasuntonpong, C. Tribuddharat, and V. Thamlikitkul. 2005. Epidemiology of extended-spectrum β-lactamase producing gram-negative bacilli at Siriraj Hospital, Thailand, 2003. Southeast Asian J. Trop. Med. Public Health 36:1503-1509. [PubMed] [Google Scholar]
- 11.Cholley, P., D. Hocquet, C. Alauzet, A. Cravoisy, D. Talon, A. Nejla, P. Plesiat, and X. Bertrand. 2010. Hospital outbreak of Pseudomonas aeruginosa producing extended-spectrum oxacillinase OXA-19. J. Med. Microbiol. doi: 10.1099/jmm.0.019364-0. [DOI] [PubMed]
- 12.Comité de l'Antibiogramme de la Société Française de Microbiologie. 13 November 2007. Guidelines 2006. http://www.sfm.asso.fr/doc/download.php?doc=DiU8C&fic=casfm_2006.pdf.
- 13.Corvec, S., L. Poirel, J. W. Decousser, P. Y. Allouch, H. Drugeon, and P. Nordmann. 2006. Emergence of carbapenem-hydrolysing metallo-β-lactamase VIM-1 in Pseudomonas aeruginosa isolates in France. Clin. Microbiol. Infect. 12:941-942. [DOI] [PubMed] [Google Scholar]
- 14.Danel, F., M. G. P. Page, and D. M. Livermore. 2007. Class D β-lactamases, p. 163-194. In R. A. Bonomo and M. E. Tolmasky (ed.), Enzyme-mediated resistance to antibiotics. ASM Press, Washington, DC.
- 15.David, M., J. F. Lemeland, and S. Boyer. 2008. Emergence of extended-spectrum β-lactamases in Pseudomonas aeruginosa: about 24 cases at Rouen University Hospital. Pathol. Biol. 56:429-434. [DOI] [PubMed] [Google Scholar]
- 16.De Champs, C., C. Chanal, D. Sirot, R. Baraduc, J. P. Romaszko, R. Bonnet, A. Plaidy, M. Boyer, E. Carroy, M. C. Gbadamassi, S. Laluque, O. Oules, M. C. Poupart, M. Villemain, and J. Sirot. 2004. Frequency and diversity of class A extended-spectrum β-lactamases in hospitals of the Auvergne, France: a 2 year prospective study. J. Antimicrob. Chemother. 54:634-639. [DOI] [PubMed] [Google Scholar]
- 17.Dubois, V., C. Arpin, V. Dupart, A. Scavelli, L. Coulange, C. André, I. Fischer, F. Grobost, J. P. Brochet, I. Lagrange, B. Dutilh, J. Jullin, P. Noury, G. Larribet, and C. Quentin. 2008. β-Lactam and aminoglycoside resistance rates and mechanisms among Pseudomonas aeruginosa in French general practice (community and private healthcare centres). J. Antimicrob. Chemother. 62:316-323. [DOI] [PubMed] [Google Scholar]
- 18.Fournier, D., D. Hocquet, B. Dehecq, P. Cholley, and P. Plésiat. 2010. Detection of a new extended-spectrum oxacillinase in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 65:364-365. [DOI] [PubMed] [Google Scholar]
- 19.Juan, C., X. Mulet, L. Zamorano, S. Alberti, J. L. Perez, and A. Oliver. 2009. Detection of the novel extended-spectrum β-lactamase OXA-161 from a plasmid-located integron in Pseudomonas aeruginosa clinical isolates from Spain. Antimicrob. Agents Chemother. 53:5288-5290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Levesque, C., L. Piche, C. Larose, and P. Roy. 1995. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob. Agents Chemother. 39:185-191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Livermore, D. M. 2002. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis. 34:634-640. [DOI] [PubMed] [Google Scholar]
- 22.Llanes, C., C. Neuwirth, F. El Garch, D. Hocquet, and P. Plésiat. 2006. Genetic analysis of a multiresistant strain of Pseudomonas aeruginosa producing PER-1 β-lactamase. Clin. Microbiol. Infect. 12:270-278. [DOI] [PubMed] [Google Scholar]
- 23.Mathew, A., A. M. Harris, M. J. Marshall, and G. W. Ross. 1975. The use of analytical isoelectric focusing for detection and identification of β-lactamases. J. Gen. Microbiol. 88:169-178. [DOI] [PubMed] [Google Scholar]
- 24.Mendes, R. E., K. A. Kiyota, J. Monteiro, M. Castanheira, S. S. Andrade, A. C. Gales, A. C. C. Pignatari, and S. Tufik. 2007. Rapid detection and identification of metallo-β-lactamase-encoding genes by multiplex real-time PCR assay and melt curve analysis. J. Clin. Microbiol. 45:544-547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Naas, T., P. Bogaerts, C. Bauraing, Y. Degheldre, Y. Glupczynski, and P. Nordmann. 2006. Emergence of PER and VEB extended-spectrum β-lactamases in Acinetobacter baumannii in Belgium. J. Antimicrob. Chemother. 58:178-182. [DOI] [PubMed] [Google Scholar]
- 26.NCCLS/CLSI. 2009. Method for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard, 8th ed. M7-A7. NCCLS/CLSI, Wayne, PA.
- 27.Ozgumus, O. B., R. Caylan, I. Tosun, C. Sandalli, K. Aydin, and I. Koksal. 2007. Molecular epidemiology of clinical Pseudomonas aeruginosa isolates carrying IMP-1 metallo-β-lactamase gene in a university hospital in Turkey. Microb. Drug Resist. 13:191-198. [DOI] [PubMed] [Google Scholar]
- 28.Philippon, L., T. Naas, A. Bouthors, V. Barakett, and P. Nordmann. 1997. OXA-18, a class D clavulanic acid-inhibited extended-spectrum β-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 41:2188-2195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Poirel, L., L. Brinas, N. Fortineau, and P. Nordmann. 2005. Integron-encoded GES-type extended-spectrum β-lactamase with increased activity toward aztreonam in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 49:3593-3597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Poirel, L., L. Brinas, A. Verlinde, L. Ide, and P. Nordmann. 2005. BEL-1, a novel clavulanic acid-inhibited extended-spectrum β-lactamase, and the class 1 integron In120 in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 49:3743-3748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Poirel, L., I. Le Thomas, T. Naas, A. Karim, and P. Nordmann. 2000. Biochemical sequence analyses of GES-1, a novel class A extended-spectrum β-lactamase, and the class 1 integron In52 from Klebsiella pneumoniae. Antimicrob. Agents Chemother. 44:622-632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Poirel, L., M. Magalhaes, M. Lopes, and P. Nordmann. 2004. Molecular analysis of metallo-β-lactamase gene blaSPM-1-surrounding sequences from disseminated Pseudomonas aeruginosa isolates in Recife, Brazil. Antimicrob. Agents Chemother. 48:1406-1409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Poirel, L., T. Naas, and P. Nordmann. 2010. Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob. Agents Chemother. 54:24-38. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Rossolini, G. M., and J. D. Docquier. 2007. Class B β-lactamases, p. 115-144. In R. A. Bonomo and M. E. Tolmasky (ed.), Enzyme-mediated resistance to antibiotics. ASM Press, Washington, DC.
- 35.Sutcliffe, J. G. 1978. Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322. Proc. Natl. Acad. Sci. U. S. A. 75:3737-3741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Talon, D., V. Cailleaux, M. Thouverez, and Y. Michel-Briand. 1996. Discriminatory power and usefulness of pulsed-field gel electrophoresis in epidemiological studies of Pseudomonas aeruginosa. J. Hosp. Infect. 32:135-145. [DOI] [PubMed] [Google Scholar]
- 37.Tenover, F. C., R. D. Arbeit, R. V. Goering, P. A. Mickelsen, B. E. Murray, D. H. Persing, and B. Swaminathan. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33:2233-2239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Vahaboglu, H., R. Ozturk, G. Aygun, F. Coskunkan, A. Yaman, A. Kaygusuz, H. Leblebicioglu, I. Balik, K. Aydin, and M. Otkun. 1997. Widespread detection of PER-1-type extended-spectrum β-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study. Antimicrob. Agents Chemother. 41:2265-2269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Vettoretti, L., N. Floret, D. Hocquet, B. Dehecq, P. Plésiat, D. Talon, and X. Bertrand. 2009. Emergence of extensive-drug-resistant Pseudomonas aeruginosa in a French university hospital. Eur. J. Clin. Microbiol. Infect. Dis. 28:1217-1222. [DOI] [PubMed] [Google Scholar]
- 40.Weldhagen, G. F., L. Poirel, and P. Nordmann. 2003. Ambler class A extended-spectrum β-lactamases in Pseudomonas aeruginosa: novel developments and clinical impact. Antimicrob. Agents Chemother. 47:2385-2392. [DOI] [PMC free article] [PubMed] [Google Scholar]

