Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1980 Dec;40(6):1017–1022. doi: 10.1128/aem.40.6.1017-1022.1980

Biochemical characterization of cholesterol-reducing Eubacterium.

G E Mott, A W Brinkley, C L Mersinger
PMCID: PMC291714  PMID: 6779702

Abstract

We characterized two isolates of cholesterol-reducing Eubacterium by conducting conventional biochemical tests and by testing various sterols and glycerolipids as potential growth factors. In media containing cholesterol and plasmenylethanolamine, the tests for nitrate reduction, indole production, and gelatin and starch hydrolyses were negative, and no acid was produced from any of 22 carbohydrates. Both isolates hydrolyzed esculin to esculetin, indicating beta-glycosidase activity. In addition to plasmenylethanolamine, five other lipids which contain an alkenyl ether residue supported growth of Eubacterium strain 403 in a lecithin-cholesterol base medium. Of six steroids tested, cholesterol, cholest-4-en-3-one, cholest-4-en-3 beta-ol (allocholesterol), and androst-5-en-3 beta-ol-17-one supported growth of Eubacterium strain 403. All four steroids were reduced to the 3 beta-ol, 5 beta-H products. The delta 5 steroids cholest-5-en-3 alpha-ol (epicholesterol) and 22,23-bisnor-5-cholenic acid-3-beta-ol were not reduced and did not support growth of the Eubacterium strain.

Full text

PDF
1017

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Björkhem I., Gustafsson J. A., Wrange O. Microbial transformation of cholesterol into coprostanol. Properties of a 3-oxo- 4-steroid-5 beta-reductase. Eur J Biochem. 1973 Aug 1;37(1):143–147. doi: 10.1111/j.1432-1033.1973.tb02968.x. [DOI] [PubMed] [Google Scholar]
  2. Brinkley A. W., Gottesman A. R., Mott G. E. Growth of cholesterol-reducing Eubacterium on cholesterol-brain agar. Appl Environ Microbiol. 1980 Dec;40(6):1130–1132. doi: 10.1128/aem.40.6.1130-1132.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DAWSON R. M., HEMINGTON N., DAVENPORT J. B. Improvements in the method of determining individual phospholipids in a complex mixture by successive chemical hydrolyses. Biochem J. 1962 Sep;84:497–501. doi: 10.1042/bj0840497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dawson R. M., Hemington N. Some properties of purified phospholipase D and especially the effect of amphipathic substances. Biochem J. 1967 Jan;102(1):76–86. doi: 10.1042/bj1020076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eyssen H. J., Parmentier G. G., Compernolle F. C., De Pauw G., Piessens-Denef M. Biohydrogenation of sterols by Eubacterium ATCC 21,408--Nova species. Eur J Biochem. 1973 Jul 16;36(2):411–421. doi: 10.1111/j.1432-1033.1973.tb02926.x. [DOI] [PubMed] [Google Scholar]
  6. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  7. GOTTFRIED E. L., RAPPORT M. M. THE BIOCHEMISTRY OF PLASMALOGENS. III. CONCENTRATIONS IN TISSUES OF THE RAT AS A FUNCTION OF AGE. Biochemistry. 1963 Jul-Aug;2:646–648. doi: 10.1021/bi00904a004. [DOI] [PubMed] [Google Scholar]
  8. Gardiner W. L., Herning E. C. Gas-liquid chromatographic separation of C19 and C21 human urinary steroids by a new procedure. Biochim Biophys Acta. 1966 Feb 28;115(2):524–526. doi: 10.1016/0304-4165(66)90461-2. [DOI] [PubMed] [Google Scholar]
  9. Mott G. E., Brinkley A. W. Plasmenylethanolamine: growth factor for cholesterol-reducing Eubacterium. J Bacteriol. 1979 Sep;139(3):755–760. doi: 10.1128/jb.139.3.755-760.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Parmentier G., Eyssen H. Mechanism of biohydrogenation of cholesterol to coprostanol by Eubacterium ATCC 21408. Biochim Biophys Acta. 1974 May 29;348(2):279–284. doi: 10.1016/0005-2760(74)90239-2. [DOI] [PubMed] [Google Scholar]
  11. Sadzikowski M. R., Sperry J. F., Wilkins T. D. Cholesterol-reducing bacterium from human feces. Appl Environ Microbiol. 1977 Oct;34(4):355–362. doi: 10.1128/aem.34.4.355-362.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Snyder F., Blank M. L., Wykle R. L. The enzymic synthesis of ethanolamine plasmalogens. J Biol Chem. 1971 Jun 10;246(11):3639–3645. [PubMed] [Google Scholar]
  13. Sperry J. F., Wilkins T. D. Arginine, a growth-limiting factor for Eubacterium lentum. J Bacteriol. 1976 Aug;127(2):780–784. doi: 10.1128/jb.127.2.780-784.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tung J. S., Ostwald R. Effect of dietary cholesterol on bile-acid composition of gall bladder bile from guinea pigs. Lipids. 1969 May;4(3):216–223. doi: 10.1007/BF02532632. [DOI] [PubMed] [Google Scholar]
  15. Zolg W., Ottow J. C. Improved thin-layer technique for detection of arginine dihydrolase among the Pseudomonas species. Appl Microbiol. 1973 Dec;26(6):1001–1003. doi: 10.1128/am.26.6.1001-1003.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES