Abstract
Anaerobic methane oxidation is a general process important in controlling fluxes of methane from anoxic marine sediments. The responsible organism has not been isolated, and little is known about the electron acceptors and substrates involved in the process. Laboratory evidence indicates that sulfate reducers and methanogens are able to oxidize small quantities of methane. Field evidence suggests anaerobic methane oxidation may be linked to sulfate reduction. Experiments with specific inhibitors for sulfate reduction (molybdate), methanogenesis (2-bromoethanesulfonic acid), and acetate utilization (fluoroacetate) were performed on marine sediments from the zone of methane oxidation to determine whether sulfate-reducing bacteria or methanogenic bacteria are responsible for methane oxidation. The inhibition experiment results suggest that methane oxidation in anoxic marine sediments is not directly mediated by sulfate-reducing bacteria or methanogenic bacteria. Our results are consistent with two possibilities: anaerobic methane oxidation may be mediated by an unknown organism or a consortium involving an unknown methane oxidizer and sulfate-reducing bacteria.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banat I. M., Lindström E. B., Nedwell D. B., Balba M. T. Evidence for coexistence of two distinct functional groups of sulfate-reducing bacteria in salt marsh sediment. Appl Environ Microbiol. 1981 Dec;42(6):985–992. doi: 10.1128/aem.42.6.985-992.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iversen N., Blackburn T. H. Seasonal rates of methane oxidation in anoxic marine sediments. Appl Environ Microbiol. 1981 Jun;41(6):1295–1300. doi: 10.1128/aem.41.6.1295-1300.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Panganiban A. T., Jr, Patt T. E., Hart W., Hanson R. S. Oxidation of methane in the absence of oxygen in lake water samples. Appl Environ Microbiol. 1979 Feb;37(2):303–309. doi: 10.1128/aem.37.2.303-309.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Postgate J. R. Methane as a minor product of pyruvate metabolism by sulphate-reducing and other bacteria. J Gen Microbiol. 1969 Aug;57(3):293–302. doi: 10.1099/00221287-57-3-293. [DOI] [PubMed] [Google Scholar]
- WOELLER F. H. Liquid scintillation counting of C-14-labelled CO2 with phenethylamine. Anal Biochem. 1961 Oct;2:508–511. doi: 10.1016/0003-2697(61)90056-2. [DOI] [PubMed] [Google Scholar]
- Zehnder A. J., Brock T. D. Anaerobic methane oxidation: occurrence and ecology. Appl Environ Microbiol. 1980 Jan;39(1):194–204. doi: 10.1128/aem.39.1.194-204.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zehnder A. J., Brock T. D. Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol. 1979 Jan;137(1):420–432. doi: 10.1128/jb.137.1.420-432.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]