Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1985 Oct;50(4):1021–1026. doi: 10.1128/aem.50.4.1021-1026.1985

Cellulose Decomposition and Associated Nitrogen Fixation by Mixed Cultures of Cellulomonas gelida and Azospirillum Species or Bacillus macerans

Dorothy M Halsall 1,*, Alan H Gibson 1
PMCID: PMC291786  PMID: 16346898

Abstract

Mixed cultures of Cellulomonas gelida plus Azospirillum lipoferum or Azospirillum brasilense and C. gelida plus Bacillus macerans were shown to degrade cellulose and straw and to utilize the energy-yielding products to fix atmospheric nitrogen. This cooperative process was followed over 30 days in sand-based cultures in which the breakdown of 20% of the cellulose and 28 to 30% of the straw resulted in the fixation of 12 to 14.6 mg of N per g of cellulose and 17 to 19 mg of N per g of g straw consumed. Cellulomonas species have certain advantages over aerobic cellulose-degrading fungi in being able to degrade cellulose at oxygen concentrations as low as 1% O2 (vol/vol) which would allow a close association between cellulose-degrading and microaerobic diazotrophic microorganisms. Cultures inoculated with initially different proportions of A. brasilense and C. gelida all reached a stable ratio of approximately 1 Azospirillum/3 Cellulomonas cells.

Full text

PDF
1021

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cáceres E. A. Improved Medium for Isolation of Azospirillum spp. Appl Environ Microbiol. 1982 Oct;44(4):990–991. doi: 10.1128/aem.44.4.990-991.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. GRAU F. H., WILSON P. W. Physiology of nitrogen fixation by Bacillus polymyxa. J Bacteriol. 1962 Mar;83:490–496. doi: 10.1128/jb.83.3.490-496.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. HINO S., WILSON P. W. Nitrogen fixation by a facultative bacillus. J Bacteriol. 1958 Apr;75(4):403–408. doi: 10.1128/jb.75.4.403-408.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Halsall D. M., Turner G. L., Gibson A. H. Straw and Xylan Utilization by Pure Cultures of Nitrogen-Fixing Azospirillum spp. Appl Environ Microbiol. 1985 Feb;49(2):423–428. doi: 10.1128/aem.49.2.423-428.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. JOHNSON M. J. A rapid micromethod for estimation of non-volatile organic matter. J Biol Chem. 1949 Dec;181(2):707–711. [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Lynch J. M. Phytotoxicity of acetic acid produced in the anaerobic decomposition of wheat straw. J Appl Bacteriol. 1977 Feb;42(1):81–87. doi: 10.1111/j.1365-2672.1977.tb00672.x. [DOI] [PubMed] [Google Scholar]
  8. Okon Y., Houchins J. P., Albrecht S. L., Burris R. H. Growth of Spirillum lipoferum at constant partial pressures of oxygen, and the properties of its nitrogenase in cell-free extracts. J Gen Microbiol. 1977 Jan;98(1):87–93. doi: 10.1099/00221287-98-1-87. [DOI] [PubMed] [Google Scholar]
  9. Rennie R. J. Dinitrogen-fixing bacteria: computer-assisted identification of soil isolates. Can J Microbiol. 1980 Nov;26(11):1275–1283. doi: 10.1139/m80-213. [DOI] [PubMed] [Google Scholar]
  10. SMOGYI M. Notes on sugar determination. J Biol Chem. 1952 Mar;195(1):19–23. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES