Abstract
A protocol was developed for the efficient production and regeneration of Clostridium perfringens protoplasts. Cell wall regeneration frequencies of up to 5% were obtained.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALTENBERN R. A. Reversion of L forms and spheroplasts of Proteus mirabilis. J Bacteriol. 1963 Feb;85:269–272. doi: 10.1128/jb.85.2.269-272.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allcock E. R., Reid S. J., Jones D. T., Woods D. R. Clostridium acetobutylicum Protoplast Formation and Regeneration. Appl Environ Microbiol. 1982 Mar;43(3):719–721. doi: 10.1128/aem.43.3.719-721.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaschek H. P., Solberg M. Isolation of a plasmid responsible for caseinase activity in Clostridium perfringens ATCC 3626B. J Bacteriol. 1981 Jul;147(1):262–266. doi: 10.1128/jb.147.1.262-266.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabor M. H., Hotchkiss R. D. Parameters governing bacterial regeneration and genetic recombination after fusion of Bacillus subtilis protoplasts. J Bacteriol. 1979 Mar;137(3):1346–1353. doi: 10.1128/jb.137.3.1346-1353.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammes W., Schleifer K. H., Kandler O. Mode of action of glycine on the biosynthesis of peptidoglycan. J Bacteriol. 1973 Nov;116(2):1029–1053. doi: 10.1128/jb.116.2.1029-1053.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heefner D. L., Squires C. H., Evans R. J., Kopp B. J., Yarus M. J. Transformation of Clostridium perfringens. J Bacteriol. 1984 Aug;159(2):460–464. doi: 10.1128/jb.159.2.460-464.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikeda H., Inoue M., Omura S. Improvement of macrolide antibiotic-producing streptomycete strains by the regeneration of protoplasts. J Antibiot (Tokyo) 1983 Mar;36(3):283–288. doi: 10.7164/antibiotics.36.283. [DOI] [PubMed] [Google Scholar]
- Knowlton S., Ferchak J. D., Alexander J. K. Protoplast Regeneration in Clostridium tertium: Isolation of Derivatives with High-Frequency Regeneration. Appl Environ Microbiol. 1984 Dec;48(6):1246–1247. doi: 10.1128/aem.48.6.1246-1247.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kondo J. K., McKay L. L. Plasmid transformation of Streptococcus lactis protoplasts: optimization and use in molecular cloning. Appl Environ Microbiol. 1984 Aug;48(2):252–259. doi: 10.1128/aem.48.2.252-259.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee-Wickner L. J., Chassy B. M. Production and Regeneration of Lactobacillus casei Protoplasts. Appl Environ Microbiol. 1984 Nov;48(5):994–1000. doi: 10.1128/aem.48.5.994-1000.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin Y. L., Blaschek H. P. Transformation of Heat-Treated Clostridium acetobutylicum Protoplasts with pUB110 Plasmid DNA. Appl Environ Microbiol. 1984 Oct;48(4):737–742. doi: 10.1128/aem.48.4.737-742.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minton N. P., Morris J. G. Regeneration of protoplasts of Clostridium pasteurianum ATCC 6013. J Bacteriol. 1983 Jul;155(1):432–434. doi: 10.1128/jb.155.1.432-434.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neuberger A., Wilson B. M. Inhibition of lysozyme by derivatives of D-glucosamine. I. Biochim Biophys Acta. 1967 Dec 12;147(3):473–486. doi: 10.1016/0005-2795(67)90007-4. [DOI] [PubMed] [Google Scholar]
- Udou T., Ogawa M., Mizuguchi Y. An improved method for the preparation of mycobacterial spheroplasts and the mechanism involved in the reversion to bacillary form: electron microscopic and physiological study. Can J Microbiol. 1983 Jan;29(1):60–68. doi: 10.1139/m83-010. [DOI] [PubMed] [Google Scholar]