Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1971 Feb;50(2):388–400. doi: 10.1172/JCI106506

Synthesis of hemoglobin Gun Hill: increased synthesis of the heme-free βGH globin chain and subunit exchange with a free α-chain pool

Ronald F Rieder 1
PMCID: PMC291935  PMID: 5540175

Abstract

Hemoglobin Gun Hill is an unstable mutant hemoglobin associated with mild compensated hemolysis. This abnormal protein has a deletion of five amino acids in the β-chains. The deletion includes the heme-binding proximal histidine at position 92. The β-chains of hemoglobin Gun Hill lack heme groups. Approximately 32% of the circulating hemoglobin in heterozygous subjects consists of the mutant hemoglobin. When reticulocytes were incubated with radioactive amino acid the specific activity of hemoglobin Gun Hill was three to six times that of hemoglobin A. Total incorporation of radioactivity into hemoglobin Gun Hill was two to three times that into hemoglobin A. There were 20-50% more total counts in β-Gun Hill (βGH) than in βA. These results indicate that in reticulocytes there was greater synthesis of the abnormal β-chains than βA-chains. The ratio of the specific activities of the α-chains of hemoglobin Gun Hill to the α-chains of hemoglobin A was 20: 1. There was evidence of a free pool of α-chains in the reticulocytes containing hemoglobin Gun Hill. After 10 min of incubation approximately 40% of the total α-chain radioactivity was in the free pool. When protein synthesis was blocked by incubation of reticulocytes with puromycin, the specific activity of the α-chains of hemoglobin Gun Hill continued to increase due to direct exchange of α-subunits between the free pool and preformed hemoglobin Gun Hill. Studies of the assembly of βA and βGH revealed that the rates of translation of the two polypeptide chains were equal and uniform. No evidence was obtained for the existence of “slow points” in the process of globin chain assembly. The studies also suggest that lack of strong heme-globin binding does not hinder the synthesis of globin chains.

Full text

PDF
388

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson W. F., Gilbert J. M. tRNA-dependent translational control of in vitro hemoglobin synthesis. Biochem Biophys Res Commun. 1969 Aug 7;36(3):456–462. doi: 10.1016/0006-291x(69)90586-5. [DOI] [PubMed] [Google Scholar]
  2. BOYER S. H., HATHAWAY P., GARRICK M. D. MODULATION OF PROTEIN SYNTHESIS IN MAN: AN IN VITRO STUDY OF HEMOGLOBIN SYNTHESIS BY HETEROZYGOTES. Cold Spring Harb Symp Quant Biol. 1964;29:333–346. doi: 10.1101/sqb.1964.029.01.036. [DOI] [PubMed] [Google Scholar]
  3. Bradley T. B., Jr, Wohl R. C., Rieder R. F. Hemoglobin Gun Hill: deletion of five amino acid residues and impaired heme-globin binding. Science. 1967 Sep 29;157(3796):1581–1583. doi: 10.1126/science.157.3796.1581. [DOI] [PubMed] [Google Scholar]
  4. CHERNOFF A. I., PETIT N., NORTHROP J. THE AMINO ACID COMPOSITION OF HEMOGLOBIN. V. THE PREPARATION OF PURIFIED HEMOGLOBIN FRACTIONS BY CHROMATOGRAPHY ON CELLULOSE EXCHANGERS AND THEIR IDENTIFICATION BY STARCH GEL ELECTROPHORESIS USING TRIS-BORATE-EDTA BUFFER. Blood. 1965 May;25:646–661. [PubMed] [Google Scholar]
  5. Charache S., Mondzac A. M., Gessner U. Hemoglobin Hasharon (alpha-2-47 his(CD5)beta-2): a hemoglobin found in low concentration. J Clin Invest. 1969 May;48(5):834–847. doi: 10.1172/JCI106041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clegg J. B., Naughton M. A., Weatherball D. J. Abnormal human haemoglobins. Separation and characterization of the alpha and beta chains by chromatography, and the determination of two new variants, hb Chesapeak and hb J (Bangkok). J Mol Biol. 1966 Aug;19(1):91–108. doi: 10.1016/s0022-2836(66)80052-9. [DOI] [PubMed] [Google Scholar]
  7. Clegg J. B., Weatherall D. J. Haemoglobin synthesis in alpha-thalassaemia (haemoglobin H disease). Nature. 1967 Sep 16;215(5107):1241–1243. doi: 10.1038/2151241a0. [DOI] [PubMed] [Google Scholar]
  8. Clegg J. B., Weatherall D. J., Na-Nakorn S., Wasi P. Haemoglobin synthesis in beta-thalassaemia. Nature. 1968 Nov 16;220(5168):664–668. doi: 10.1038/220664a0. [DOI] [PubMed] [Google Scholar]
  9. DINTZIS H. M. Assembly of the peptide chains of hemoglobin. Proc Natl Acad Sci U S A. 1961 Mar 15;47:247–261. doi: 10.1073/pnas.47.3.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De Renzo E. C., Ioppolo C., Amiconi G., Antonini E., Wyman J. Properties of the alpha and beta chains of hemoglobin prepared from their mercuribenzoate derivatives by treatment with 1-dodecanethiol. J Biol Chem. 1967 Nov 10;242(21):4850–4853. [PubMed] [Google Scholar]
  11. Englander S. W., Page L. A. Interpretation of data on sequential labeling of growing polypeptides. Biochem Biophys Res Commun. 1965 May 18;19(5):565–570. doi: 10.1016/0006-291x(65)90375-x. [DOI] [PubMed] [Google Scholar]
  12. FANELLI A. R., ANTONINI E., CAPUTO A. Studies on the structure of hemoglobin. I. Physicochemical properties of human globin. Biochim Biophys Acta. 1958 Dec;30(3):608–615. doi: 10.1016/0006-3002(58)90108-2. [DOI] [PubMed] [Google Scholar]
  13. GABUZDA T. G., NATHAN D. G., GARDNER F. H. THE METABOLISM OF THE INDIVIDUAL C14 LABELED HEMOGLOBINS IN PATIENTS WITH H-THALASSEMIA, WITH OBSERVATIONS ON RADIOCHROMATE BINDING TO THE HEMOGLOBINS DURING RED CELL SURVIVAL. J Clin Invest. 1965 Feb;44:315–325. doi: 10.1172/JCI105145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gabuzda T. G., Nathan D. G., Gardner F. H. THE TURNOVER OF HEMOGLOBINS A, F, AND A(2) IN THE PERIPHERAL BLOOD OF THREE PATIENTS WITH THALASSEMIA. J Clin Invest. 1963 Nov;42(11):1678–1688. doi: 10.1172/JCI104854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Honig G. R. Inhibition of synthesis of fetal hemoglobin by an isoleucine analogue. J Clin Invest. 1967 Nov;46(11):1778–1784. doi: 10.1172/JCI105668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Honig G. R., Rowan B. Q., Mason R. G. Unequal synthesis of complementary globin chains of human fetal hemoglobin by the effect of L-O-methylthreonine. J Biol Chem. 1969 Apr 25;244(8):2027–2032. [PubMed] [Google Scholar]
  17. KUNKEL H. G., CEPPELLINI R., MULLER-EBERHARD U., WOLF J. Observations on the minor basic hemoglobin component in the blood of normal individuals and patients with thalassemia. J Clin Invest. 1957 Nov;36(11):1615–1625. doi: 10.1172/JCI103561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kazazian H. H., Jr, Freedman M. L. The characterization of separated alpha and beta-chain polyribosomes in rabbit reticulocytes. J Biol Chem. 1968 Dec 25;243(24):6446–6450. [PubMed] [Google Scholar]
  19. Kazazian H. H., Jr, Itano H. A. Studies on the quantitative control of polypeptide synthesis in human reticulocytes. J Biol Chem. 1968 Apr 25;243(8):2048–2055. [PubMed] [Google Scholar]
  20. LONDON I. M., BRUNS G. P., KARIBIAN D. THE REGULATION OF HEMOGLOBIN SYNTHESIS AND THE PATHOGENESIS OF SOME HYPOCHROMIC ANEMIAS. Medicine (Baltimore) 1964 Nov;43:789–802. doi: 10.1097/00005792-196411000-00024. [DOI] [PubMed] [Google Scholar]
  21. Maxwell C. R., Rabinovitz M. Evidence for an inhibitor in the control of globin synthesis by hemin in a reticulocyte lysate. Biochem Biophys Res Commun. 1969 Apr 10;35(1):79–85. doi: 10.1016/0006-291x(69)90485-9. [DOI] [PubMed] [Google Scholar]
  22. RIEDER R. F., WEATHERALL D. J. STUDIES ON HEMOGLOBIN BIOSYNTHESIS: ASYNCHRONOUS SYNTHESIS OF HEMOGLOBIN A AND HEMOGLOBIN A2 BY ERYTHROCYTE PRECURSORS. J Clin Invest. 1965 Jan;44:42–50. doi: 10.1172/JCI105125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. RIEDER R. F., ZINKHAM W. H., HOLTZMAN N. A. HEMOGLOBIN ZUERICH; CLINICAL, CHEMICAL AND KINETIC STUDIES. Am J Med. 1965 Jul;39:4–20. doi: 10.1016/0002-9343(65)90241-x. [DOI] [PubMed] [Google Scholar]
  24. Rieder R. F., Bradley T. B., Jr Hemoglobin Gun Hill: an unstable protein associated with chronic hemolysis. Blood. 1968 Sep;32(3):355–369. [PubMed] [Google Scholar]
  25. SINGER K., FISHER B. Studies on abnormal hemoglobins. V. The distribution of type S, sickle cell, hemoglobin and type F, alkali resistant, hemoglobin within the red cell population in sickle cell anemia. Blood. 1952 Dec;7(12):1216–1226. [PubMed] [Google Scholar]
  26. Smithies O. Disulfide-bond cleavage and formation in proteins. Science. 1965 Dec 17;150(3703):1595–1598. doi: 10.1126/science.150.3703.1595. [DOI] [PubMed] [Google Scholar]
  27. Tavill A. S., Grayzel A. I., London I. M., Williams M. K., Vanderhoff G. A. The role of heme in the synthesis and assembly of hemoglobin. J Biol Chem. 1968 Oct 10;243(19):4987–4999. [PubMed] [Google Scholar]
  28. Weatherall D. J., Clegg J. B., Na-Nakorn S., Wasi P. The pattern of disordered haemoglobin synthesis in homozygous and heterozygous beta-thalassaemia. Br J Haematol. 1969 Mar;16(3):251–267. doi: 10.1111/j.1365-2141.1969.tb00400.x. [DOI] [PubMed] [Google Scholar]
  29. Weatherall D. J., Clegg J. B., Naughton M. A. Globin synthesis in thalassaemia: an in vitro study. Nature. 1965 Dec 11;208(5015):1061–1065. doi: 10.1038/2081061a0. [DOI] [PubMed] [Google Scholar]
  30. Weatherall D. J., Clegg J. B. The control of human hemoglobin synthesis and function in health and disease. Prog Hematol. 1969;6:261–304. [PubMed] [Google Scholar]
  31. White J. M., Brain M. C. Defective synthesis of an unstable haemoglobin: haemoglobin Koln (beta 98 Val-Met). Br J Haematol. 1970 Feb;18(2):195–209. doi: 10.1111/j.1365-2141.1970.tb01434.x. [DOI] [PubMed] [Google Scholar]
  32. Winslow R. M., Ingram V. M. Peptide chain synthesis of human hemoglobins A and A2. J Biol Chem. 1966 Mar 10;241(5):1144–1149. [PubMed] [Google Scholar]
  33. Zucker W. V., Schulman H. M. Stimulation of globin-chain initiation by hemin in the reticulocyte cell-free system. Proc Natl Acad Sci U S A. 1968 Feb;59(2):582–589. doi: 10.1073/pnas.59.2.582. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES