Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1971 Mar;50(3):463–473. doi: 10.1172/JCI106514

Mechanochemistry of cardiac muscle

V.Influence of thyroid state on energy utilization

C Lynn Skelton 1,2, Peter E Pool 1,2, Shirley C Seagren 1,2, Eugene Braunwald 1,2
PMCID: PMC291952  PMID: 5545115

Abstract

The possibility that alterations in the rate or efficiency of energy utilization could be involved in the control of cellular oxygen consumption by thyroid hormone was examined in right ventricular papillary muscles isolated from normal euthyroid cats and cats with experimentally induced hyperthyroidism and hypothyroidism. Energy production in the muscles was inhibited and isolated from the process of energy utilization by exposure to iodoacetic acid and nitrogen. After resting or performing variable amounts of contractile element work under isometric conditions, muscles were frozen, and the total amount of chemical energy (∼ P = creatine phosphate + ATP) used was determined. The resting rate of energy utilization in muscles from euthyroid animals was 0.78±0.07 μmoles/g per min of ∼ P. This rate was elevated in muscles from hyperthyroid cats to 1.00±0.09 μmoles/g per min and decreased in muscles from hypothyroid cats to 0.23±0.14 μmoles/g per min. Isometrically contracting muscles from cats with hypothyroidism utilized only 64% as much energy as muscles from euthyroid cats while performing 81% as much contractile element work at a moderately decreased level of contractile state. Muscles from hyperthyroid cats utilized an average of 41% more energy than did muscles from euthyroid cats while contracting an identical number of times and performing an equal amount of contractile element work at a slightly increased level of contractile state. These results suggest that thyroid hormone directly influences the rate of cellular energy utilization. Furthermore, the increase in energy utilization in muscles from hyperthyroid cats could not be attributed entirely to observed alterations in contractile behavior, which indicates that excess thyroid hormone may decrease the efficiency of the conversion of cellular energy to work. However, the opposite effect, an increased efficiency of energy utilization, was not observed in muscles from hypothyroid cats. Thus, it is concluded that the calorigenic effects of thyroid hormone may be explained, at least in part, by alterations in the process of energy utilization.

Full text

PDF
463

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BING R. J., HAMMOND M. M. The measurement of coronary blood flow, oxygen consumption, and efficiency of the left ventricle in man. Am Heart J. 1949 Jul;38(1):1–24. doi: 10.1016/0002-8703(49)90788-7. [DOI] [PubMed] [Google Scholar]
  2. Braunwald E. Thirteenth Bowditch lecture. The determinants of myocardial oxygen consumption. Physiologist. 1969 May;12(2):65–93. [PubMed] [Google Scholar]
  3. Buccino R. A., Spann J. F., Jr, Pool P. E., Sonnenblick E. H., Braunwald E. Influence of the thyroid state on the intrinsic contractile properties and energy stores of the myocardium. J Clin Invest. 1967 Oct;46(10):1669–1682. doi: 10.1172/JCI105658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CAIN D. F., DAVIES R. E. Breakdown of adenosine triphosphate during a single contraction of working muscle. Biochem Biophys Res Commun. 1962 Aug 7;8:361–366. doi: 10.1016/0006-291x(62)90008-6. [DOI] [PubMed] [Google Scholar]
  5. ENNOR A. H., ROSENBERG H. The determination and distribution of phosphocreatine in animal tissues. Biochem J. 1952 Aug;51(5):606–610. doi: 10.1042/bj0510606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Evans C. L., Matsuoka Y. The effect of various mechanical conditions on the gaseous metabolism and efficiency of the mammalian heart. J Physiol. 1915 Jul 5;49(5):378–405. doi: 10.1113/jphysiol.1915.sp001716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GOH K., DALLAM R. D. Oxygen consumption of the auricles, right and left ventricles of the normal, hypothyroid rat heart. Am J Physiol. 1957 Mar;188(3):514–518. doi: 10.1152/ajplegacy.1957.188.3.514. [DOI] [PubMed] [Google Scholar]
  8. Gold M., Scott J. C., Spitzer J. J. Myocardial metabolism of free fatty acids in control, hyperthyroid, and hypothyroid dogs. Am J Physiol. 1967 Jul;213(1):239–244. doi: 10.1152/ajplegacy.1967.213.1.239. [DOI] [PubMed] [Google Scholar]
  9. Graham T. P., Jr, Covell J. W., Sonnenblick E. H., Ross J., Jr, Braunwald E. Control of myocardial oxygen consumption: relative influence of contractile state and tension development. J Clin Invest. 1968 Feb;47(2):375–385. doi: 10.1172/JCI105734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HOCH F. L. Biochemical actions of thyroid hormones. Physiol Rev. 1962 Oct;42:605–673. doi: 10.1152/physrev.1962.42.4.605. [DOI] [PubMed] [Google Scholar]
  11. HOCH F. L. Thyrotoxicosis as a disease of mitochondria. N Engl J Med. 1962 Mar 1;266:446–contd. doi: 10.1056/NEJM196203012660907. [DOI] [PubMed] [Google Scholar]
  12. KOCH-WESER J., BLINKS J. R. THE INFLUENCE OF THE INTERVAL BETWEEN BEATS ON MYOCARDIAL CONTRACTILITY. Pharmacol Rev. 1963 Sep;15:601–652. [PubMed] [Google Scholar]
  13. Murayama M., Goodkind M. J. Effect of thyroid hormone on the frequency-force relationship of atrial myocardium from the guinea pig. Circ Res. 1968 Dec;23(6):743–751. doi: 10.1161/01.res.23.6.743. [DOI] [PubMed] [Google Scholar]
  14. Parmley W. W., Sonnenblick E. H. Series elasticity in heart muscle. Its relation to contractile element velocity and proposed muscle models. Circ Res. 1967 Jan;20(1):112–123. doi: 10.1161/01.res.20.1.112. [DOI] [PubMed] [Google Scholar]
  15. Parmley W. W., Spann J. F., Jr, Taylor R. R., Sonnenblick E. H. The series elasticity of cardiac muscle in hyperthyroidism, ventricular hypertrophy, and heart failure. Proc Soc Exp Biol Med. 1968 Feb;127(2):606–609. doi: 10.3181/00379727-127-32753. [DOI] [PubMed] [Google Scholar]
  16. Piatnek-Leunissen D., Olson R. E. Cardiac failure in the dog as a consequence of exogenous hyperthyroidism. Circ Res. 1967 Feb;20(2):242–252. doi: 10.1161/01.res.20.2.242. [DOI] [PubMed] [Google Scholar]
  17. Pool P. E., Chandler B. M., Seagren S. C., Sonnenblick E. H. Mechanochemistry of cardiac muscle. II. The isotonic contraction. Circ Res. 1968 Apr;22(4):465–472. doi: 10.1161/01.res.22.4.465. [DOI] [PubMed] [Google Scholar]
  18. Pool P. E., Sonnenblick E. H. The mechanochemistry of cardiac muscle. I. The isometric contraction. J Gen Physiol. 1967 Mar;50(4):951–965. doi: 10.1085/jgp.50.4.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. ROWE G. G., HUSTON J. H., WEINSTEIN A. B., TUCHMAN H., BROWN J. F., CRUMPTON C. W. The hemodynamics of thyrotoxicosis in man with special reference to coronary blood flow and myocardial oxygen metabolism. J Clin Invest. 1956 Mar;35(3):272–276. doi: 10.1172/JCI103273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SCOTT J. C., BALOURDAS T. A., CROLL M. N. The effect of experimental hypothyroidism on coronary blood flow and hemodynamic factors. Am J Cardiol. 1961 May;7:690–693. doi: 10.1016/0002-9149(61)90454-4. [DOI] [PubMed] [Google Scholar]
  21. Skelton C. L., Coleman H. N., Wildenthal K., Braunwald E. Augmentation of myocardial oxygen consumption in hyperthyroid cats. Circ Res. 1970 Sep;27(3):301–309. doi: 10.1161/01.res.27.3.301. [DOI] [PubMed] [Google Scholar]
  22. Sonnenblick E. H. Active state in heart muscle. Its delayed onset and modification by inotropic agents. J Gen Physiol. 1967 Jan;50(3):661–676. doi: 10.1085/jgp.50.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sonnenblick E. H., Parmley W. W., Buccino R. A., Spann J. F., Jr Maximum force development in cardiac muscle. Nature. 1968 Sep 7;219(5158):1056–1058. doi: 10.1038/2191056a0. [DOI] [PubMed] [Google Scholar]
  24. Sonnenblick E. H., Ross J., Jr, Braunwald E. Oxygen consumption of the heart. Newer concepts of its multifactoral determination. Am J Cardiol. 1968 Sep;22(3):328–336. doi: 10.1016/0002-9149(68)90117-3. [DOI] [PubMed] [Google Scholar]
  25. Stocker W. W., Samaha F. J., DeGroot L. J. Coupled oxidative phosphorylation in muscle of thyrotoxic patients. Am J Med. 1968 Jun;44(6):900–909. doi: 10.1016/0002-9343(68)90090-9. [DOI] [PubMed] [Google Scholar]
  26. TATA J. R., ERNSTER L., LINDBERG O., ARRHENIUS E., PEDERSEN S., HEDMAN R. The action of thyroid hormones at the cell level. Biochem J. 1963 Mar;86:408–428. doi: 10.1042/bj0860408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tata J. R. The formation and distribution of ribosomes during hormone-induced growth and development. Biochem J. 1967 Jul;104(1):1–16. doi: 10.1042/bj1040001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. WANG K. M., BENMILOUD M. EFFECT OF THYROXINE AND THIOURACIL ON THE MG++-ACTIVATED ATPASE ON THE RAT MYOCARDIUM. Life Sci. 1964 May;3:431–440. doi: 10.1016/0024-3205(64)90203-6. [DOI] [PubMed] [Google Scholar]
  29. den BAKKER P. B., SUNDERMEYER J. F., WENDT V. E., SALHANEY M., GUDBJARNASON S., BING R. J. Myocardial metabolism in a patient with Hashimoto's thyroiditis and hypothyroidism. Case report, with metabolic studies. Am J Med. 1962 May;32:822–826. doi: 10.1016/0002-9343(62)90173-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES